
SANDIA REPORT
SAND2008-8260
Unlimited Release
Printed December 2008

Scalable Descriptive and Correlative
Statistics with Titan

Philippe Pébay, David Thompson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2



SAND2008-8260
Unlimited Release

Printed December 2008

Scalable Descriptive and Correlative
Statistics with Titan

Philippe Pébay
Sandia National Laboratories

M.S. 9159, P.O. Box 969
Livermore, CA 94551, U.S.A.

pppebay@sandia.gov

David Thompson
Sandia National Laboratories

M.S. 9159, P.O. Box 969
Livermore, CA 94551, U.S.A.

dcthomp@sandia.gov

Abstract

This report summarizes the existing statistical engines in VTK/Titan and presents the parallel
versions thereof which have already been implemented. The ease of use of these parallel
engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies
the design of these engines with parallel scalability in mind; then, this theoretical property is
verified with test runs that demonstrate optimal parallel speed-up with up to 200 processors.

3

http://www.vtk.org/
http://www.sandia.gov/Titan/


Acknowledgments

The authors would like to thank:

• Brian Wylie, for his comments on the integration of scalable statistical tools in VTK/Titan,

• Ken Moreland, for having reviewed this report and having helped us better assess parallel
speed-up and scalability properties,

• Jackson Mayo, for his precursor work on a serial version of the multi-correlative statistics
algorithm.

4

http://www.vtk.org/
http://www.sandia.gov/Titan/


Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 The Titan Informatics Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Statistics Functionality in Titan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Parallel Statistics Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Algorithm Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Algorithm Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/


This page intentionally left blank

6



1 Introduction

1.1 The Titan Informatics Toolkit

The Titan Informatics Toolkit is a collaborative effort between Sandia National Laboratories and
Kitware Inc. It represents a significant expansion of the Visualization ToolKit (VTK) to support
the ingestion, processing, and display of informatics data. By leveraging the VTK engine, Titan
provides a flexible, component based, pipeline architecture for the integration and deployment of
algorithms in the fields of intelligence, semantic graph and information analysis.

Figure 1. A theoretical application built with Titan.

A theoretical application built from Titan/VTK components is schematized in Figure 1. The flexi-
bility of the pipeline architecture allows effective utilization of the Titan components for different
problem domains. An actual implementation is OverView, a generalization of the ParaView sci-
entific visualization application to support the ingestion, processing, and display of informatics
data. The ParaView client-server architecture provides a mature framework for performing scal-
able analysis on distributed memory platforms, and OverView will use these capabilities to analyze
informatics problems that are too large for individual workstations.

The Titan project represents one of the first software development efforts to address the merging
of scientific visualization and information visualization on a substantive level. The VTK parallel
client-server layer will provide an excellent framework for doing scalable analysis on distributed
memory platforms. The benefits of combining the two fields are already reaping rewards in the
form of functionality such as the cell lineage application below.

7

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.vtk.org/
http://www.vtk.org/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.vtk.org/
http://www.sandia.gov/OverView/
http://www.paraview.org/
http://www.paraview.org/
http://www.vtk.org/


1.2 Statistics Functionality in Titan

A number of univariate, bivariate, and multivariate statistical tools have been implemented in Titan.
Each tool acts upon data stored in one or more tables; the first table serves as observations and
further tables serves as model data. Each row of the first table is an observation, while the form of
further tables depends on the type of statistical analysis. Each column of the first table is a variable.

1.2.1 Variables

A univariate statistics algorithm only uses information from a single column and, similarly, a
bivariate from 2 columns. Because an input table may have many more columns than an algorithm
can make use of, Titan must provide a way for users to denote columns of interest. Because it
may be more efficient to perform multiple analyses of the same type on different sets of columns
at once as opposed to one after another, Titan provides a way for users to make multiple analysis
requests of a single filter.

Table 1. A table of observations that might serve as input to a
statistics algorithm.

row A B C D E
1 0 1 0 1 1.03315
2 1 2 2 2 0.76363
3 0 3 4 6 0.49411
4 1 5 6 24 0.04492
5 0 7 8 120 0.58395
6 1 11 10 720 1.66202

As an example, consider Table 1. It has 6 observations of 5 variables. If the correlations between
A, B, and C, and also between B, C and D are desired, two requests, R1 and R2 must be made. The
first request R1 would have columns of interest {A,B,C} while R2 would have columns of interest
{B,C,D}. Calculating covariances for R1 and R2 in one pass is more efficient than computing each
separately since cov(B,B), cov(C,C), and cov(B,C) are required for both requests but need only
be computed once.

1.2.2 Phases

Each statistics algorithm performs its computations in a sequence of common phases, regardless
of the particular analysis being performed. These phases can be described as:

Learn: Calculate a “raw” statistical model from an input data set. By “raw”, we mean the minimal
representation of the desired model, that contains only primary statistics. For example, in

8

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/


the case of descriptive statistics: sample size, minimum, maximum, mean, and centered M2,
M3 and M4 aggregates (cf. [P0́8]). For Table 1 with a request R1 = {B}, these values are 6,
1, 11, 4.83̄, 68.83̄, 159.4̄, and 1759.8194̄, respectively.

Derive: Calculate a “full” statistical model from a raw model. By “full”, we mean the complete
representation of the desired model, that contains both primary and derived statistics. For
example, in the case of descriptive statistics, the following derived statistics are calculated
from the raw model: unbiased variance estimator, standard deviation, and two estimators (g
and G) for both skewness and kurtosis. For Table 1 with a request R1 = {B}, these additional
values are 13.76̄, 3.7103, 0.520253, 0.936456, −1.4524, and −1.73616 respectively.

Assess: Given a statistical model – from the same or another data set – mark each datum of a
given data set. For example, in the case of descriptive statistics, each datum is marked with
its relative deviation with respect to the model mean and standard deviation (this amounts
to the one-dimensional Mahalanobis distance). Table 1 shows this distance for R1 = {B} in
column E.

Figure 2. An example utilization of Titan’s statistics algorithms
in OverView.

An example of the utilization of Titan’s statistical tools in OverView is illustrated in Figure 2;
specifically, the descriptive, correlative, and order statistics classes are used in conjunction with
various table views and plots. With the exception of contingency statistics which can be performed
on any type (nominal, cardinal, or ordinal) of variables, all currently implemented algorithms
require cardinal or ordinal variables as inputs.

At the time of writing, the following algorithms are available in Titan:

1. Univariate statistics:

9

http://www.sandia.gov/Titan/
http://www.sandia.gov/OverView/
http://www.sandia.gov/Titan/
http://www.sandia.gov/OverView/
http://www.sandia.gov/Titan/


(a) Descriptive statistics:
Learn: calculate minimum, maximum, mean, and centered M2, M3 and M4 aggre-

gates;
Derive: calculate unbiased variance estimator, standard deviation, skewness (12 and

G1 estimators), kurtosis (g2 and G2 estimators);
Assess: mark with relative deviations (one-dimensional Mahlanobis distance).

(b) Order statistics:
Learn: calculate histogram;
Derive: calculate arbitrary quartiles, such as “5-point” statistics (quartiles) for box

plots, deciles, percentiles, etc.;
Assess: mark with quartile index.

2. Bivariate statistics:

(a) Correlative statistics:
Learn: calculate minima, maxima, means, and centered M2 aggregates;
Derive: calculate unbiased variance and covariance estimators, Pearson correlation co-

efficient, and linear regressions (both ways);
Assess: mark with squared two-dimensional Mahlanobis distance.

(b) Contingency statistics:
Learn: calculate contingency table;
Derive: calculate joint, conditional, and marginal probabilities, as well as information

entropies;
Assess: mark with joint and conditional PDF values.

3. Multivariate statistics:

These filters all accept multiple requests Ri, each of which is a set of ni variables upon which
simultaneous statistics should be computed.

(a) Multi-Correlative statistics:
Learn: calculate means and pairwise centered M2 aggregates;
Derive: calculate the upper triangular portion of the symmetric ni×ni covariance ma-

trix and its (lower) Cholesky decomposition;
Assess: mark with squared multi-dimensional Mahlanobis distance.

(b) PCA statistics:
Learn: identical to the multi-correlative filter;
Derive: everything the multi-correlative filter provides, plus the ni eigenvalues and

eigenvectors of the covariance matrix;
Assess: perform a change of basis to the principal components (eigenvectors), op-

tionally projecting to the first mi components, where mi ≤ ni is either some user-
specified value or is determined by the fraction of maximal eigenvalues whose sum
is above a user-specified threshold. This results in mi additional columns of data
for each request Ri.

10



In the following sections, we present the currently available parallel version of the aforementioned
algorithms, provide a basic user manual of these, and examine their correctness as well as their
parallel speed-up properties.

11



2 Method

2.1 Parallel Statistics Classes

The main reason we split the process of creating a full statistical model into two phases is parallel
computational efficiency, so that inter-processor communication and updates are performed only
for primary statistics; derived statistics need only be calculated at once, without communication,
upon completion of all parallel updates of primary variables. The calculations to obtain derived
statistics from primary statistics are usually fast and simple. When assessing data, we assume that
the data to be assessed is distributed in parallel across all processes participating in the computa-
tion, so no communication is required – every process assess all its resident data.

Therefore, the only part of the parallel versions of the statistical engines that involve inter-processor
communication is the Learn phase, whereas both Derive and Assess are executed in an embarrass-
ingly parallel fashion thanks to data parallelism. This approach is consistent with the data paral-
lelism methodology used to enable parallelism with VTK, most notably in ParaView. Because the
focus of this report is on the parallel speed-up properties of statistics engines, it is therefore not
necessary to report on the Derive or Assess phases, as these are executed independently from each
other, on a separate process for each part of the data partition. However, because the Derive phase
provides the derived quantities to which one is naturally accustomed (e.g., variance as opposed to
M2 aggregate), the numerical results reported here are those that are yielded by the consecutive
application of the Learn and then Derive phases.

At this point (December 2008) of the development of scalable statistics algorithms in Titan, the
following 3 parallel classes are implemented:

1. vtkPDescriptiveStatistics;

2. vtkPCorrelativeStatistics;

3. vtkPMultiCorrelativeStatistics.

These are the classes whose parallel efficiency and numerical accurracy we will discuss.

2.2 Usage

It is fairly easy to use the serial statistics classes of Titan; it is not much harder to use their parallel
versions. All it takes is a parallel build of Titan and a version of MPI installed on your system.

For example, Listing 1 shows what is required to calculate descriptive statistics, in parallel, on each
column of an input set inputData of type vtkTable*, with no subsequent data assessment. Note
that if, instead, the Assess phase were turned on with pds->SetAssess( true ) then, by default,

12

http://www.vtk.org/
http://www.paraview.org/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/


void Foo( vtkMultiProcessController* controller, void* arg )
{
// Use the specified controller on all parallel filters by default:
vtkMultiProcessController::SetGlobalController( controller );

// Assume the input dataset is passed to us:
vtkTable* inputData = static_cast<vtkTable*>( arg );

// Create parallel descriptive statistics class
vtkPDescriptiveStatistics* pds = vtkPDescriptiveStatistics::New();

// Set input data port
pds->SetInput( 0, inputData );

// Select all columns in inputData
for ( int c = 0; c < inputData->GetNumberOfColumns(); ++ c )
{
pds->AddColumn( inputData->GetColumnName[c] );
}

// Calculate statistics with Learn and Derive phases only
pds->SetLearn( true );
pds->SetDerive( true );
pds->SetAssess( false );
pds->Update();

}

Listing 1: A subroutine – that should be run in parallel – for calculating descriptive statistics.

unsigned deviations (Mahalanobis distance) would be calculated. To obtained signed deviations,
call pds->SignedDeviationsOn() .

For univariate statistics algorithms, calling AddColumn() for each column of interest sufficient –
each request Ri can by definition only reference a single column and so the filter automatically
turns each column of interest into a separate request. Similarly, bivariate algorithms need only call
AddColumn() an even number of times to unambiguously specify a set of requests. However, this
is not sufficient for multivariate filters as each request might have a different number of columns of
interest. In order to queue a request for multivariate statistics algorithms, call SetColumnStatus()
to turn on columns of interest (and to turn off any previously-selected columns that are not of in-
terest) and then call RequestSelectedColumns(). Consider the example from §1.2.1 and Table 1
where 2 requests are mentioned: {A,B,C} and {B,C,D}. The code snippet in Listing 2 shows how
to queue these requests for a vtkPMultiCorrelativeStatistcs object.

Apart from queuing requests, using the other parallel statistics engines only differs in the fact that
the option to elect signed deviations as opposed to the Mahlanobis distance for the assessment

13



vtkPMultiCorrelativeStatistics* pms = vtkPMultiCorrelativeStatistics::New();

// Turn on columns of interest
pms->SetColumnStatus( "A", 1 );
pms->SetColumnStatus( "B", 1 );
pms->SetColumnStatus( "C", 1 );
pms->RequestSelectedColumns();

// Columns A, B, and C are still selected, so first we turn off
// column A so it will not appear in the next request.
pms->SetColumnStatus( "A", 0 );
pms->SetColumnStatus( "D", 1 );
pms->RequestSelectedColumns();

Listing 2: An example of requesting multiple multi-variate analyses.

of data is available only to the case of descriptive statistics; the concepts of left and right do not
extend to dimensions higher than one.

The listings above all assume that you have already prepared an MPI communicator, loaded a
dataset into the inputData object, and are running in a parallel environment. It is outside the
scope of this report to discuss I/O issues, and in particular how a vtkTable can be created and
filled with the values of the variables of interest. See VTK’s online documentation for details [vtk].
However, we will include below a small amount of code to prepare a parallel controller.

The vtkMultiProcessController object passed to Foo() is used to determine the set of pro-
cesses (which may be a subset of a larger job) among which input data is distributed. Subroutines
of this form are used by VTK to specify which code should be executed across many processes.
In order to execute Foo() in parallel using MPI, one must first (e.g., in the main routine), create
a vtkMPIController and pass it the address of Foo() as shown in Listing 3. Note that, when
using MPI, the number of processes is determined by the external program which launches this
application.

14

http://www.vtk.org/
http://www.vtk.org/


vtkTable* inputData;
vtkMPIController* controller = vtkMPIController::New();
controller->Initialize( &argc, &argv );

// Execute the function named Foo on all processes
controller->SetSingleMethod( Foo, &inputData );
controller->SingleMethodExecute();

// Clean up
controller->Finalize();
controller->Delete();

Listing 3: A snippet of code to show how to execute a subroutine (Foo()) in parallel. In reality,
inputData would be prepared in parallel by Foo() but is assumed to be pre-populated here to
simplify the example.

15



3 Results

The parallel runs have been executed on Sandia National Laboratories’ catalyst computational
cluster, which comprises 120 dual 3.06GHz Pentium Xeon compute nodes with 2GB of memory
each. This cluster has a Gigabit Ethernet user network for job launch, I/O to storage, and user
interaction with jobs, and a 4X Infiniband fabric high-speed network using a Voltaire 9288 Infini-
Band switch. Its operating system has a Linux 2.6.17.11 kernel, and its batch scheduling system
is the TORQUE resource manager [tor].

3.1 Algorithm Scalability

In order to assess speed-up independently of the load-balancing scheme, a series of (pseudo-)
randomly-generated samples is used. Specifically, input tables are created at run time by gen-
erating 4 separate samples of independent pseudo-random variables, the two first (resp. last)
variables having a standard normal (resp. standard uniform) distribution. Since our objective
is to assess the scalability of the parallel statistics engines only, equally-sized slabs of data are
created by each process in order to work with perfectly load-balanced cases. For the same rea-
son, the amount of time needed to create the input data table is excluded from the analysis. In
this test, vtkPDescriptiveStatistics, with Learn, Derive, and Assess modes on, is executed
for each of the 4 columns, and the corresponding wall clock time is reported. Subsequently,
vtkPCorrelativeStatistics, with Learn, Derive, and Assess modes turned on is executed on
a single pair of columns (standard normal ones), and the corresponding wall clock time is also
reported.

With these synthetic examples, we assess:

1. relative speed-up (at constant total work), and

2. scalability of the rate of computation (at constant work per processor).

3.1.1 Relative Speed-Up

Given a problem of size N (as measured in our case by sample size), the wall clock time mea-
sured to complete the work with p processors is denoted TN(p). Then, relative speed-up with p
processors is

SN(p) =
TN(1)
TN(p)

.

Evidently, optimal (linear) speedup is attained with p processors when SN(p) = p and, therefore,
relative speed-up results for SN may be visually inspected by plotting SN versus the number of
processors: optimal speed-up is revealed by a line, the angle bisector of the first quadrant.

16



Table 2. Relative speed-up (at constant total work), with a total
sample size of N = 25,600,000.

N/p p Descriptive Correlative
(sec. / SN(p)) (sec. / SN(p))

25,600,000 1 75 / 1.00 58 / 1.00
12,800,000 2 38 / 1.97 30 / 1.93
6,400,000 4 19 / 3.95 14 / 4.14
3,200,000 8 9 / 8.33 8 / 7.25
1,600,000 16 5 / 15.0 4 / 14.5
800,000 32 2 / 37.5 2 / 29.0

In the first series of test runs, in order to assess relative speed-up, the sample is subdivided into
4 columns of size 6,400,000. Thus, the input data of the entire test case contains a total of
N = 25,600,000 values. The values of p were chosen to be increasing powers of 2, for conve-
nience only: making use of other values did not modify speed-up results. The results obtained on
catalyst are provided in Table 2, and plotted in Figure 3.

As expected based on the embarrassingly parallel nature of the algorithms, the measured relative
speed-up is optimal (within ±10% fluctuations attributable to OS jitter and such), until total wall
time measurements become too small to remain accurate (less than 1 sec.), and the decreasing
amount of work per processor ultimately results in a situation where overheads, even small in
absolute terms, become dominant as compared to the amount of actual computational work. In this
current example, it appears that with 32 processors, minimal reliably measurable wall clock time
has been or is almost reached. Note that this corresponds to a per processor load of N/p = 800,000
points per processor.

3.1.2 Rate of Computation Scalability

The rate of computation is defined as

r(p) =
N(p)

TN(p)(p)
,

where N(p), the sample size, now varies with the number of processors p. We then measure
its scalability by normalizing it with respect to the rate of computation obtained with a single
processor, as follows:

R(p) =
r(p)
r(1)

=
N(p)TN(1)(1)
N(1)TN(p)(p)

,

17



1

2

4

8

16

32

1 2 4 8 16 32

Sp
ee

du
p,

S
N

(p
)

Number of Processors, p

Theoretical optimal speedup
Measured speedup, descriptive statistics
Measured speedup, correlative statistics

Figure 3. Relative speed-up at constant total work with a total
data size of N = 25,600,000.

In particular, if the sample size is made to vary in proportion to the number of processors, i.e., if
N(p) = pN(1), then

R(p) =
pTN(1)(1)
TpN(1)(p)

=
pTN(1)(1)
pTN(1)(p)

=
TN(1)(1)
TN(1)(p)

,

and thus, optimal (linear) scalability is also attained with p processors when R(p) = p. Note
that without linear dependency between N and p, the latter equality no longer implies optimal
scalability. Hence, under the above assumptions, scalability can also be visually inspected, with a
plot of R versus the number of processors, where optimal scalability is also indicated by the angle
bisector of the first quadrant.

In order to assess rate of computation scalability (at constant work per processor), increasingly
large samples are created, containing np quadruples, where n = 106 and p ∈ {1,2,4,8,16,32,64}
respectively denote the number of sample points per processor, and the number of processors, thus
resulting in a total sample size of N(p) = 4np. Note that whether one or two cores per node are
occupied by the np processes in each case is left for the scheduler to decide; forcing all cluster
nodes to utilize either exactly one, or exactly two of their cores dit did not result in a measurable
difference.

In each case, a table of size n× 4 is created by each process. Corresponding wall clock times
measured on catalyst are given in Table 3, and plotted in Figure 4 ; these clearly exhibit optimal
scalability (again within±10% fluctuations attributable to OS jitter and such), thus experimentally
verifying the embarrassingly parallel nature of these algorithms. It is also worth noting that using
1 or 2 cores per node did not result in any measurable difference.

18



Table 3. Rate of computation scalability (at constant load per
processor).

N(p) p Descriptive Correlative
(sec. / R) (sec. / R)

4,000,000 1 12 / 1.00 10 / 1.00
8,000,000 2 12 / 2.00 10 / 2.00
16,000,000 4 12 / 4.00 10 / 4.00
32,000,000 8 12 / 8.00 9 / 8.89
64,000,000 16 13 / 14.8 10 / 16.0
128,000,000 32 13 / 29.5 10 / 32.0
256,000,000 64 13 / 59.1 10 / 64.0
512,000,000 128 13 / 118 10 / 128
800,000,000 200 13 / 185 10 / 200

3.2 Algorithm Correctness

In order to assess algorithm correctness, we make use of the same test cases as § 3.1, for which
we inspect the numerical results obtained by both the vtkPDescriptiveStatistics and the
vtkPCorrelativeStatistics classes. More precisely, we examine the statistical models ob-
tained when both Learn and Derive options are turned on. Since the statistical properties of the test
cases are known, we can immediately compare them to the calculated results.

Relatively large input sets are used (n = 106), in order to mitigate the risk of statistical bias due
to insufficient sampling. In addition, the test case is run 100 times for each random variable, and
we examine the statistical dispersion of the results of the ensemble of these runs. We compare the
results obtained with the Learn and Derive option of the statistical engines to the theoretical values
of the random variables which serve as models for the pseudo-random inputs, namely, N (0,1)
and U (0,1). This comparison is done by simple visual inspection of the numerical results, by:

1. comparing the sample mean of the quantity of interest (e.g., mean) across the a number nr
of runs to the corresponding theoretical quantity (e.g, expectation), and

2. examining the variability of the results by checking the standard deviation of the quantity of
interest across the nr runs.

Using this methodology with either nr = 100 or nr = 200 runs over 32 processors, the results
provided in Table 4, Table 5, Table 6, and Table 7, respectively for vtkPDescriptiveStatistics
and vtkPDescriptiveStatistics operating on standard uniform and standard normal pseudo-

19



1

2

4

8

16

32

64

128
200

1 2 4 8 16 32 64 128 200

Sc
al

ab
ili

ty
,
R

(p
)

Number of Processors, p

Theoretical optimal scalability
Measured scalability, descriptive statistics
Measured scalability, correlative statistics

Figure 4. Rate of computation scalability at constant work per
processor of N(p)/p = 4,000,000.

random inputs, we see that the numerical results are in statistical agreement with their theoretical
counterparts, and display very limited variability across runs.

Finally, the last series checks we performed for the Learn and Derive modes consisted in verifying
that the parallel descriptive, correlative, and multi-correlative classes indeed calculated the same
results for those statistics they have in common: means, variances, and covariances (for the correl-
ative classes only). And indeed, this is what we observed in all cases. In fact, this verification is
now a part of the automated, “regression” tests of VTK.

20

http://www.vtk.org/


Table 4. Descriptive statistics of a pseudo-random sample (size:
106), averaged across 200 runs, versus theoretical values: standard
uniform distribution.

Statistic Sample Mean Standard Deviation Theoretical Value

Mean 0.4999973 5.968778 ·10−5 0.5
Variance 8.333224 ·10−2 1.292998 ·10−5 0.083 . . .

Skewness

{
g1 :−4.508892 ·10−6

G1:−4.508891 ·10−6

{
g1 : 2.985500 ·10−4

G1: 2.985500 ·10−4 0

Kurtosis

{
g2 :−1.200003
G2:−1.200003

{
g2 : 1.858247 ·10−4

G2: 1.858247 ·10−4 −1.2

Table 5. Descriptive statistics of a pseudo-random sample (size:
106), averaged across 200 runs, versus theoretical values: standard
normal distribution.

Statistic Sample Mean Standard Deviation Theoretical Value

Mean −1.279931 ·10−6 1.706985 ·10−4 0
Variance 0.9999982 2.711815 ·10−4 1

Skewness

{
g1 : 1.499232 ·10−4

G1: 1.499232 ·10−4

{
g1 : 3.946604 ·10−4

G1: 3.946604 ·10−4 0

Kurtosis

{
g2 : 4.420736 ·10−4

G2: 4.422611 ·10−4

{
g2 : 8.874214 ·10−4

G2: 8.874219 ·10−4 0

Table 6. Correlative statistics of a pseudo-random sample (size:
106), averaged across 100 runs, versus theoretical values: standard
uniform distribution.

Statistic Sample Mean Standard Deviation Theoretical Value

Mean X 0.4999953 5.779502 ·10−5 0.5
Mean Y 0.4999987 6.061554 ·10−5 0.5
Variance X 8.333061 ·10−2 1.242125 ·10−5 0.083 . . .

Variance Y 8.333405 ·10−2 1.267820 ·10−5 0.083 . . .

Covariance 6.778523 ·10−7 1.622636 ·10−5 0

21



Table 7. Correlative statistics of a pseudo-random sample (size:
106), averaged across 100 runs, versus theoretical values: standard
normal distribution.

Statistic Sample Mean Standard Deviation Theoretical Value

Mean X −6.855281 ·10−6 1.693682 ·10−4 0
Mean Y −2.714105 ·10−7 1.695545 ·10−4 0
Variance X 1.000016 2.883309 ·10−4 1
Variance Y 0.9999838 2.551778 ·10−4 1
Covariance −1.007851 ·10−5 1.885743 ·10−4 0

22



4 Conclusion

In this report, we have provided a summary of the existing statistical engines in VTK/Titan, and
have presented the parallel versions thereof which have already been implemented. We have sub-
sequently illustrated the ease of use of these parallel engines by the means of a simple example
and C++ code snippets. Last, we have demonstrated that these parallel descriptive engines exhibit
perfect parallel scale-up properties, as was expected in theory based on their design made with this
very purpose in mind.

Future work will involve in particular:

1. The parallelization of those statistics engines which have not yet been parallelized;

2. The porting and utilization of the parallel statistics engines on a terascale computer, in order
to perform statistical analysis on a scale never seen before;

3. The writing of a more detailed user manual, encompassing all parallel statistical engines
with all available options and subtleties.

23

http://www.vtk.org/
http://www.sandia.gov/Titan/


References

[P0́8] P. Pébay. Formulas for robust, one-pass parallel computation of covariances and arbitrary-
order statistical moments. Sandia Report SAND2008-6212, Sandia National Laboratories,
September 2008.

[tor] TORQUE Resource Manager. http://www.clusterresources.com/pages/products/torque-
resource-manager.php.

[vtk] VTK Doxygen documentation. http://www.vtk.org/doc/nightly/html.

24



DISTRIBUTION:

2 MS 9159 Philippe P. Pébay, 8963
1 MS 9159 David Thompson, 8963
2 MS 9018 Central Technical Files, 8944
1 MS 0899 Technical Library, 9536

25



26



v1.31




	Introduction
	The Titan Informatics Toolkit
	Statistics Functionality in Titan

	Method
	Parallel Statistics Classes
	Usage

	Results
	Algorithm Scalability
	Algorithm Correctness

	Conclusion
	References

