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Abstract

In this report, we present the novel functionality of parallel tetrahedral mesh refinement which
we have implemented in MOAB.
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1 Introduction

This report details work done to implement parallel, edge-based, tetrahedral refinement into MOAB.
The theoretical basis for this work is contained in [PT04, PT05, TP06] while information on de-
sign, performance, and operation specific to MOAB are contained herein. As MOAB is intended
mainly for use in pre-processing and simulation (as opposed to the post-processing bent of previ-
ous papers), the primary use case is different: rather than refining elements with non-linear basis
functions, the goal is to increase the number of degrees of freedom in some region in order to more
accurately represent the solution to some system of equations that cannot be solved analytically.
Also, MOAB has a unique mesh representation which impacts the algorithm.

This introduction contains a brief review of streaming edge-based tetrahedral refinement. The
remainder of the report is broken into three sections: design and implementation (§2), performance
(§3), and conclusions (§4). Appendix A contains instructions for end users (simulation authors)
on how to employ the refiner.

1.1 Streaming edge-based tetrahedral refinement

Consider a mesh M composed of an array P = {x1,x2, . . . ,xp},xi ∈ IR3 of nodal coordinates and
an array of elements E, where each entry is some specification of the element type plus an array
of integer indices into P that define the topological corners of an element. Here we are only
interested in meshes that are simplicial complexes, so the element type is implied by the number of
indices into P used to define the corners of the element. Table 1 contains an example set of nodal
coordinates P while Table 2 contains an example array of simplicial elements E.

Table 1. An example of a nodal coordinate array P for a 3-
dimensional mesh.

IDP x y z
0 0 0 0
1 1 0 0
2 1 1 0
3 0 1 0
4 0 0 1
5 1 0 1
6 1 1 1
7 0 1 1

In addition to an input mesh Mi, a mesh refinement scheme based on subdividing elements (as
opposed to excising a region from Mi and remeshing it) requires an indicator function. An indicator
function (or characteristic function) is an injective map χ from some set of interest S to the set
{0,1}. As explained in [PT05], we will be performing edge-based subdivision, so the domain of
this map will be the set of edges of Mi. Entries of S that χ maps to 1 will be considered “marked” for
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Table 2. An example of an element array E defined on the array P
as specified in Table 1. Elements 0–4 are tetrahedra while elements
5–8 are triangles.

IDE i j k `
0 0 1 2 5
1 0 2 3 7
2 0 2 7 5
3 0 5 7 4
4 2 7 5 6
5 0 3 7
6 0 7 4
7 1 5 6
8 1 6 2

subdivision, while entries of S that χ maps to 0 must remain whole as the input mesh is partitioned
into output simplices.

It is important for mesh refiners to produce conforming output meshes when given a conforming
input Mi. A conforming mesh M is one where no topological corner points of M are interior to
any element of M or any of the element’s lower-dimensional boundaries. Whatever scheme an
edge-based subdivision technique uses to generate an array To of output tetrahedra from an input
tetrahedron Ti plus the values of χ on the edges of Ti, it must produce triangular boundaries that
match results from input tetrahedra that neighbor Ti or the result will not be a conforming output
mesh Mo. This can be accomplished in several ways, which include:

1. by matching boundaries on faces of Ti that have already been refined and imposing con-
straints on neighbors of Ti that have not been processed;

2. by performing multiple passes, imposing new constraints from neighbors and adding new
constraints to neighbors until the boundaries are matched; or

3. by choosing a scheme that will automatically produce conforming outputs given conforming
inputs.

The scheme outlined in [PT04] is of the latter class and uses comparisons of edge lengths on
boundaries to choose conforming triangulations of the boundaries. When edge lengths cannot
produce conclusive results, an additional topological corner node is added to the output point set
Po such that the boundary triangulation is symmetric and thus identical to neighbors.

Note that in order for a scheme to automatically produce conforming outputs given conforming
inputs in a streaming fashion, the evaluation of χ on some edge e must not vary depending on what
elements in Mi have boundary e. Otherwise, the edges of Mi would have to be enumerated and the
values of χ on each edge would have to be stored before refinement took place. This would violate
the reduced memory and/or communication cost that streaming provides.
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2 Design & Implementation

MOAB is a mesh-oriented database aimed at mesh representation throughout the lifecycle of a
mesh: generation, pre-processing, simulation, and even post-processing [TMM+04]. It aims to
leave a small memory and algorithm-complexity footprint and operate on parallel, distributed-
memory meshes as required by modern high performance computing platforms. To implement
streaming, edge-based refinement in MOAB, we need to accommodate these goals.

2.1 Input and output

Access to a MOAB mesh is provided through the MBInterface class, which is abstract. A con-
crete implementation is provided by MBCore. In MOAB, no distinction is made between nodes,
elements, and sets. All of these things are simply entities to MOAB, although the storage for each
particular type of entity is separate and the integer handles used to identify entities of a single
type are largely contiguous. Because entity handles assigned to consecutively created elements of
the same type are themselves consecutive, one way that MOAB reduces storage cost is through
ranges. Instead of storing a sequence of handles directly, only the first and last handles need to be
stored. Where entries of an otherwise contiguous sequence are missing, an array of intervals is cre-
ated. For example, the sequence of handles {1,2, . . . ,500,502,505,506,507} can be represented
as a range R = {[1,500], [502,502], [505,507]}. An MBRange R can be thought of as an array of
intervals which is kept ordered and does not allow duplicate entries.

MBEdgeSizeEvaluator

MBRefinerTagManager

MBInterface

inputoutput

MBEdgeSizeSimpleImplicitMBMeshOutputFunctor

MBEntityRefinerOutputFunctor

MBEntityRefiner

MBMeshRefiner MBSimplexTemplateRefiner

MBSimplexTemplateTagAssigner

Figure 1. Classes and interactions for the MOAB simplicial re-
finer.

The introduction treated refinement as a process that takes a mesh Mi and indicator function χ as
input and generates an output mesh Mo as a result. In MOAB things are slightly more complex as
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some simulations may wish to use the same mesh for both input and output. To accommodate this
use case, mesh refinement will take as input Mi, Ri, Mo, and χ (where Ri is an MBRange of input
simplices) and produce as output Ro (an MBRange of output simplices)1. Mi and Mo may be iden-
tical. An abstract refiner class MBMeshRefiner abstracts the process that maps (Mi,Ri,χ,Mo)→
(Mo,Ro). The meshes Mi and Mo are passed as pointers to MBInterface objects, the ranges are
MBRange objects, and χ must be a pointer to a concrete subclass of MBEdgeSizeEvaluator (which
is itself an abstract class). MBEdgeSizeSimpleImplicit is an example implementation of an edge
size evaluator. The MBMeshOutputFunctor class is used to insert new elements into the output
mesh independent of any particular refinement scheme in use.

Figure 1 is a diagram of the refiner classes. Users will mostly interact with the MBMeshRefiner
class which iterates over all of the requested entities in Ri and handles the parallel communi-
cation required after a refinement pass. As each entity is encountered during this iteration, a
subclass of MBEntityRefiner is invoked to evaluate edges and subdivide elements as required.
The MBSimplexTemplateRefiner is a concrete implementation that embodies the logic described
in [PT04]. As edges and elements are subdivided, an MBEntityRefinerOutputFunctor is used
to process the results. The concrete subclass MBMeshOutputFunctor stores the results in Mo. This
set of classes should provide flexibility to implement other types of refinement while maintaining
a single interface for the user and meeting the goals set forth for MOAB at the beginning of this
section.

2.2 Tags

Any entity in MOAB may be tagged with scalar or vector values. The tag values may be any prim-
itive C++ type (e.g., double, int, or char). Because mesh refinement introduces new nodes along
existing edges of the input mesh and new elements to replace input tetrahedra with edges marked
for subdivision, some way to interpolate existing tag values to these new nodes and elements is
required. The refinement process uses a MBRefinerTagManager class to

• map tag identifiers from the input mesh to the output mesh,

• maintain a list of tags the user has requested be transferred from the input to the output, and

• maintain tags required for representing distributed-memory meshes.

2.3 Partitions and interfaces

Distributed-memory meshes in MOAB use tagged sets to represent portions of mesh owned by
or shared with other processes. Specifically, MOAB has a concept of partitions and interfaces.
MOAB partitioning draws upon the concept of covering in mathematics. Recall that a cover C =
{ci} of set X is a set of subsets of X such that

S
i ci ⊃ X . Each ci represents the portion of a mesh

1New nodes (0-simplices) are not added to the output.
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stored on some process. A MOAB interface between processes i and j (i 6= j) is the intersection of
their entries in the cover: Ii j = ci

T
c j. An interface may be shared with any number of processes:

e.g., Ii jk` is an interface shared by 4 processes; note that, in particular, Ii j ⊇ Ii jk`. Later we will
be interested in non-empty interfaces that do not contain any subsets that are also interfaces; let
us call these interfaces minimal interfaces. For some mesh on Np processes a minimal interface is
denoted Ĩα where α ∈ A⊆ 2Np . The set of all minimal interfaces ĨA is an exact proper cover of the
union of all interfaces.

A MOAB partition pi on process i is the subset of ci which process i is said to own. Only one
process may own a given entity and every entity must be owned, so that P = {pi}i is an exact
proper minimal cover of X . Note that if the concept of an interface above is extended to include
elements shared with no other processes, then each process i that owns elements not shared with
other processes will have Ii = Ĩi 6= . We may then write

pi =
[

α∈Ai

Ĩα.

where Ai is the subset of A whose entries contain i. Distributed-memory meshes must have – on
each process – a set for each minimal interface. Each of those sets must be tagged with the list α

of processes share the entities it contains. The MBRefinerTagManager::set sharing member is
used to mark new nodes and elements with the list of sharing processes. When an edge is marked
for subdivision, a new node will be created. The new node will be shared with the intersection of
the list of processes sharing its endpoints. Similarly, a new node placed internal to an input tetrahe-
dron’s face to will be shared with the intersection of the processes sharings each of its topological
corners. Elements (edges, triangles, and tetrahedra) inherit their list of sharing processes from the
input element which they subdivide. Ownership is always set to be the lowest-numbered process
in the list of sharing processes.

2.4 Global IDs

As simulations and other tools add or set new tag values on entities in a distributed mesh, it is
important for entities shared with other processes to have consistent tag values. This requires a
global numbering scheme so that individual entities represented on multiple processes may be
named. MOAB defines a special integer tag for global IDs. No two entities of the same type may
have the same global ID tag value2. Global IDs need not be contiguous. The refiner is responsible
for assigning global IDs to new entities. This is accomplished by maintaining a set of newly-created
entities contained in each minimal interface Ĩα during streaming subdivision. By the definition of a
minimal interface, no entry in Ĩα is shared with any process other than those in α. Thus the owner
of all entities in Ĩα is min{α}. After subdivision, MBMeshOutputFunctor::assign global ids
is called. An all-gather of the number of minimal interfaces present on each process is performed,
followed by an all-gather of the α for each of those interfaces and the number of elements contained
in each Ĩα. While theoretically this could incur a significant communication overhead (since A ⊆
2Np grows very large with only modest increases in Np), we rely on the fact that parallel mesh

2MOAB allows entities of different types (e.g., vertices and hexahedra) to have the same global ID.
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distributions typically minimize the number of processes that must communicate and thus keep |A|
small. Global IDs for new entities are assigned starting with the largest global ID present in the
mesh before refinement plus 1, Gmax +1. The lowest process (i = 0) assigns [Gmax +1,Gmax + |Ĩ0|]
to the entries of Ĩ0 followed by all the other non-empty interface Ĩα,α ∈ A0. The α are sorted so
that the order of assignment of global IDs is unique. Then, the next lowest process (i = 1) assigns
global IDs starting with Gmax +1+ |

S
α∈A0

Ĩα|. No communication of global IDs is required since
each process knows the cardinality of each minimal interface across all processes and the ordering
of entities within each minimal interface on every process is deterministically sorted by the global
IDs of its vertices (or of the vertex’s “parent” endpoint global IDs when the vertex is created during
subdivision).
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3 Performance

A true measure of the mesh refiner’s performance cannot be made without some driving applica-
tion. Instead, what this section attempts to characterize is the rate at which single-pass refinement
can be accomplished in MOAB (where overheads due to entity creation and tag storage differ from
previous implementations of the refinement scheme, such as in [TP06] where optimal parallel
scale-up was demonstrated for load-balanced inputs) as well as some measure of the communica-
tion overhead required for global ID assignment.

The mesh used to generate timings in this section is shown in Figure 2. The indicator function
χ used evaluates a simple implicit distance function that returns 1 when an edge midpoint is near
(compared to the edge length) to a plane. In this case, the plane is x = 0.

(a) Coarse (b) Refined

Figure 2. The input mesh Mi used for the timing study. The trans-
parent blue plane shows the implicit surface used to mark edges for
subdivision. The light tetrahedra are on process 0; the dark tetra-
hedra are on process 1.

The input mesh Mi is partitioned so that 1, 2, 4, or 8 processes own some elements. No attempt
was made to balance the number of elements per process or the number of refined elements per
process; the number of input tetrahedra for each of the 4 runs is shown in Figure 3. The number
of output tetrahedra per process is similar to the number of input tetrahedra and so no figure is
presented. The raw data is included in Appendix B, along with the timing results for 5 replicates
of each run.

The speed at which processes in the various runs were able to process tetrahedra was highly vari-
able, ranging from less than 1 tetrahedron per millisecond to hundreds of tetrahedra per millisec-
ond. However, when plotted against the total number of input tetrahedra visited by the process
(Figure 4) or the total number of output tetrahedra produced by the process (Figure 5), a pattern
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Figure 4. This plot shows the rate at which each process in the
various jobs was able to perform subdivision on its input tetrahe-
dra.

becomes evident. The overhead involved in filling instruction and data caches, interprocess com-
munication, etc. is significant when there are less than approximately 6,000 input tetrahedra or
11,000 output tetrahedra per process.

There are many other factors that should be studied if time permits, including:

• the number of element and vertex tag values being copied and interpolated to the output,

• the number of minimal interfaces present on each process, and

• the effect of different edge size evaluators with a range of compute intensities and memory
access patterns.

The test data here represent runs with minimal tag values, a small number of interfaces present,
and a simple calculation for edge size evaluation.
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4 Conclusion

We have presented a framework for parallel mesh refinement and an embodiment that performs
edge-based subdivision of simplicial complexes. The performance on small datasets has been
characterized. Efficiency in parallel will clearly depend on the number of entities in Ri on each
process, the number of entities in Ro on each process, and the particular edge size evaluator cho-
sen. Other factors may affect performance as the scale is increased. In particular, the effect of the
number of minimal interfaces present on each process has not been characterized. However, we
expect this to vary from application to application and any scaling studies should include a partic-
ular simulation or mesh processing task or risk irrelevance. Any mesh redistribution performed by
the simulation will significantly impact the performance of the refiner and this is something best
left to a specific application rather than included in refinement.

4.1 Known issues and further development

While the refiner works, there are some known issues that we hope to resolve.

1. Occasionally the simplicial subdivision produces elements that are non-conforming. We
have not been able to reliably reproduce the conditions where this occurs on a small test
mesh but it does not appear related to inter-process mesh boundaries.

2. The remote handles of entities in mesh interfaces are not currently exchanged among sharing
processes.

3. The interface for supporting multiple refinement passes needs testing.

Beyond these issues there are opportunities for further development that we would like to explore:

1. Implementing streaming hexahedral refinement using the MBEntityRefiner interface.

2. Exploring the use of a single, extremely coarse mesh that is refined each time step (or every
few time steps) in order to provide a mesh of suitable resolution. This would be a way to
effectively coarsen a mesh without the overhead of a non-local scheme (a typical requirement
of mesh coarsening).

3. Investigating alternative edge size evaluation techniques in tandem with a real-world simula-
tion in order to develop techniques reduce the frequency at which refinement must occur and
still provide both speedy time step advances (i.e., few superfluous degrees of freedom) and
the required accuracy (i.e., adequate degrees of freedom near features of interest). We ex-
pect that inference techniques employing information from current and previous time steps
as well as boundary/initial conditions and geometric mesh quality could provide performance
gains over other adaptive techniques.
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[PT05] Philippe P. Pébay and David Thompson. Communication-free streaming mesh refine-
ment. Journal of Computing and Information Science in Engineering, 5(4):309–316,
2005. Special Issue on Mesh-based Geometry.

[TMM+04] Timothy J. Tautges, Ray Meyers, Kerl Merkley, Clint Stimpson, and Corey Ernst.
MOAB: A mesh-oriented database. Technical Report SAND2004-1592, Sandia Na-
tional Laboratories, April 2004.
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A A Brief User’s Manual

The code fragment in Table A.1 provides an example of how to use the refiner.

Table A.1. A small example of mesh refinement.

#include "refiner/MBMeshRefiner.hpp"

...

// We assume you have mesh pointers...
MBInterface* Mi, Mo;
// ... and that the meshes have some tags you
// would like to interpolate to new nodes/elements.
MBTag VT0, VT1, ET;
// Create a refiner:
MBMeshRefiner refiner( Mi, Mo );
// Pass tag handles obtained from the INPUT mesh:
if ( Mi->tag_get_handle( "example0", VT0 ) == MB_SUCCESS )
refiner.add_vertex_tag( VT0 );

if ( Mi->tag_get_handle( "example1", VT1 ) == MB_SUCCESS )
refiner.add_vertex_tag( VT1 );

if ( Mi->tag_get_handle( "example2", ET ) == MB_SUCCESS )
refiner.add_element_tag( ET );

// If the tags do not exist on Mo, they will be created.
// Now, perform the refinement:
refiner.refine( Ri, Ro );

Note that by default, the MBMeshRefiner will use an MBSimplexTemplateRefiner instance for
the entity refiner and an MBEdgeSizeSimpleImplicit instance for the edge size evaluator. You
do not need to create new instances if these are adequate for your purposes. Most likely, you will
wish to create your own subclass of the MBEdgeSizeEvaluator class used to decide which edges
of the mesh should be subdivided (by implementing an evaluation of some indicator function χ).
To do this, you need only implement a single pure-virtual method:

virtual bool evaluate_edge(
const double* p0, const void* t0,
double* p1, void* t1,
const double* p2, const void* t2 );

where p0 and p2 are pointers to nodal coordinates of the edge endpoints, p1 points to the coordi-
nates of a new node that may be created (set to the edge midpoint by default but may be modified

19



inside evaluate edge), t0 and t2 are pointers to nodal tag values at the edge endpoints, and t1
points to tag values at the new node that may be created (initialized with the average value of the
endpoint tag values as appropriate and writable should p1 be modified). The new node specified
by p1 and t1 will only be created if evaluate edge returns true. The pointers to node coordinates
p0, p1, and p2 always refer to an array of 6 double values. The first 3 are parametric coordinates
and the following 3 are nodal coordinates of the nodes in question. The parametric coordinates
are with respect to the element currently being refined but you should not rely on the element as a
source of information for the return value of evaluate edge since χ must return the same value
for all elements sharing a given edge. When the MOAB mesh problem dimension is set to 2, only
the first 2 values of the parametric and nodal coordinates are significant but the offset to nodal co-
ordinates will always be 3 (for simplicity). When implementing evaluate edge, you may use the
MBEdgeSizeEvaluator’s tag manager to determine the tag handles, their sizes, and their offsets
in order to modify t1.

20



B Raw Timing Data

Table B.2. The number of input tetrahedra per process.

Process ID
0 1 2 3 4 5 6 7

16910
3987 12923
3766 4522 3780 4842
1117 2649 809 3713 1168 2612 893 3949

Table B.3. The number of output tetrahedra per process.

Process ID
0 1 2 3 4 5 6 7

38307
9970 28337
8290 10395 8376 11246
2509 5781 2272 8123 2613 5763 2576 8670
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Table B.4. Average refinement time per process in milliseconds.
5 runs were performed for each of the four partitions.

Process ID
0 1 2 3 4 5 6 7

59.46
60.36
59.56
59.26
58.74

847.02 45.301
845.77 46.789
830.29 46.975
836.01 45.970
844.32 45.645
216.52 76.540 94.29 23.194
239.24 94.855 93.57 23.269
228.38 76.041 91.77 23.064
211.21 75.150 83.06 23.377
214.52 74.201 81.74 23.217

1152.88 547.892 1219.78 289.286 1114.87 505.890 1176.29 42.564
1075.79 506.019 1120.75 192.514 1047.49 456.977 1113.61 49.088
1151.10 513.554 1181.29 261.896 1110.65 461.521 1204.61 61.390
1153.69 384.380 1178.12 47.981 1080.95 452.016 1228.26 90.079
1047.78 495.517 1145.22 172.338 1067.17 383.234 1207.90 71.014
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