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Abstract

The goal of this research was to examine foundational msthmath computational and theoreti-
cal, that can improve the veracity of entity-based compyestesn models and increase confidence
in their predictions for emergent behavior. The strategg teaseek insight and guidance from
simplified yet realistic models, such as cellular automaizh Boolean networks, whose proper-
ties can be generalized to production entity-based simounlsit We have explored the usefulness
of renormalization-group methods for finding reduced meaéksuch idealized complex systems.
We have prototyped representative models that are bottablacand relevant to Sandia mission
applications, and quantified the effect of computationabrenalization on the predictive accu-
racy of these models, finding good predictivity from renolizead versions of cellular automata
and Boolean networks. Furthermore, we have theoreticaliyyaed the robustness properties of
certain Boolean networks, relevant for characterizingaoirgbehavior, and obtained precise math-
ematical constraints on systems that are robust to failuresombination, our results provide
important guidance for more rigorous construction of grbdsed models, which currently are of-
ten devised in an ad-hoc manner. Our results can also hesigring complex systems with the
goal of predictable behavior, e.g., for cybersecurity.
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Chapter 1

Introduction

1.1 Background

Many systems of interest to Sandia missions show propertigsif-similarity, power-law scaling,
and emergent behavior. Examples include critical infragtires such as the Intern&(], the fi-
nancial systemdl], and electrical grids]0], as well as other phenomena of relevance to national
security, such as the formation and behavior of social nesvfincluding terrorist cells)d] and

the spread of communicable diseas?].| The emergence of unpredictable behavior from a col-
lection of components whose behavior is well-understoodgsumed to be well-understood) is
the hallmark of what is known as@mplex systerf22]. Sandia and other research institutions
have invested significant resources developing modelsraptax systems of interes27], but to
date there has been no validated set of principles for amtgig these models in a manner that
maximizes model rigor and veracity.

Another problem that frequently plagues efforts to modehplex systems is that the behavior
of their components and interactions may be understoodiimeiple, but the governing physics
is too complicated to simulate effectively, and may not devant to the phenomena of interest
in the system. An example would be social interactions betweeople, about which a great deal
is known in terms of culturally-specific patterns of intdran, social norms, etc., most of which
is abstracted away in models of social networks. Anothemgt@ concerns cascading failures in
electrical grids. Much is known about how transformers fiduysically, yet it is believed that not
all of the detailed physics of transformer failure is neetteaccurately model cascading electrical
grid failures [LQ]. Currently, little is known about how such “abstractingagi of the details of
component-component interactions during the modelinggs® affects the veracity and rigor of
the model.

The real danger of abstracting away too much detail of corapbbehavior and component-
component interaction can be seen in the context of the atiatuof the security properties of
computer systems. To make the job of designing computemizaedand software easier, design-
ers typically employ a paradigm of modular design, in whictoanponent or module will have
a simple interface with other components/modules (ofteroéopol) that hides (or encapsulates)
more complicated internal implementation. Frequentlyewkthe security properties of a system
are evaluated, these interfaces (which are abstractiotiedfue component behavior) are taken
at face value, as the actual behavior of the components istique The reality is that hardware
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and software components exhibit much richer “interfacaghe real world than the ones specified
in design documents, a fact which hackers have exploitecenouns times to break into systems.
A simple recent example is the “freezing” of computer DRAMpteserve the contents of volatile
memory after a machine is powered off, which allowed segugsearchers to retrieve crypto-
graphic keys and other data from an otherwise secure syd@gm [

One of the most important questions concerning the mode&fngpomplex systems is, how
much abstraction is safe? Are there general mathematicalijples that can be applied to answer
this question? To date, most efforts to model complex systeawe applied abstraction during the
course of model construction in a context-dependent, addshion. The most rigorous modeling
efforts undertake some sort of validation of models agaeatworld observations of the system of
interest, and attempt to account in the model for those éspéthe real system having the greatest
influence on the system behavior through sensitivity sgidsensitivity studies, however, require
exhaustive study of the system of interest, which may noagdnbe possible with the resources
available for the modeling effort. Furthermore, when degalvith systems that exhibit complex,
emergent phenomena, it can be difficult to know when enougkrhtions have been collected to
build a model that will yield useful results. This problermespecially pronounced when modeling
real-world systems or phenomena that have not occurret,asia massive catastrophic failure of
the modern financial system or extensive global warming.olile be enormously helpful to the
modeling of many different kinds of complex phenomena to lbe & know when a model has
captured enough detail of the real-world system to be ussfuthat a particular modeling effort
can be guided by (and compared against) rigorous, objexiieia, as opposed to the intuition of
the modelers.

1.2 Research Goals

One goal of our research was to explore the use of renormializgroup methods to find reduced
models for complex systems. Our expectation was that findiathods for computing these re-
duced models would yield greater insight into the emergefi@@mplexity in the systems being
studied, and might also yield models that were easier tornsteted yet still captured the essence
of the phenomena of interest in the original system. One ohopes is that the preliminary re-
search we have undertaken in this LDRD will allow us to begiamswer the questions raised in
the previous section, whether there are universal priasigbverning the effects abstraction has on
models of complex systems. One can view the renormalizafionp methods we have explored
in this LDRD as a formalized version of the kind of abstractibat goes on in efforts to construct
models of real-world complex systems. Because of the loegtisenormalization-group methods
in physics, there are many mathematical tools we can usedy stnormalization-group methods
for model reduction of complex systems, making it easiernttnlys than the ad-hoc methods of
abstraction now used to build models of complex systems. évew we expect that results we
have proved concerning renormalization-group methodsgeiteralize to more ad-hoc methods
of abstraction, allowing us to make statements about thecitgrand rigor of models of complex
real-world phenomena.
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A second goal of our research was to explore how the strudfuaecomplex system affects
the robustness of that system in response to perturbatiotssanvironment. To make the problem
tractable, and allow us to bring well-developed analytioals to bear on the problem, we chose to
study the structure-robustness relationship in the comte®oolean networks. Boolean networks
are graphs in which each node has a Boolean state (0 or 1 hidwages at the next timestep accord-
ing to some function of the current state and the state of dlae’s neighborsd2]. While simple,
Boolean networks can model complicated dynamics of inténefgelds such as biology, epidemi-
ology, electrical engineering, computer science, e8f. In particular, VLSI chips composed of
digital logic circuits can be represented directly as Banleetworks 3]. Our research has ex-
plored what constraints on the structure of Boolean nets/ta#d to robustness in the presence of
environmental perturbations. We believe that these resalt be generalized to show constraints
on the structure of real-world complex systems that showstiess in the presence of environ-
mental change, such as social organizations (includingrist networks), biological organisms,
computer networks, etc. Our results can hopefully inforfarés to model such systems. Further-
more, we believe our research results might have direcicgiplity to the problem of designing
logic hardware, software, and protocols that resist fauits attacks.
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Chapter 2

Cellular Automata

2.1 Background

Cellular automata provide an especially simple settingltstrate the emergence of rich phe-
nomena from basic underlying rules. Extensive theoretical computational results have been
previously obtained for cellular automata, showing thasthsystems exhibit a wide range of be-
haviors seen in the natural and manmade world, as documientalifram [34]. It has even been
suggested that cellular automata and related systems ad@lates for expressing fundamental
laws of nature, in contrast to traditional mathematicalrapphes based on differential equations
[34]. At a different level, the relevance of such idealized sy to real-world applications is
illustrated by a cellular-automaton model for the adoptdra new technology in an economy
[24].

The essence of a cellular automaton is its regular struetilecommunication pattern. A cel-
lular automaton consists of a latticea#lls each of which carries a definite state at any given time.
In most cases, the state of a cell is discrete and thus camptesented by an integer. Furthermore,
the evolution of the system is carried out in discrete tirest As a result, a specification of the
underlying dynamics of the system can be exactly reprodircaccomputer simulation, provided
enough memory and processing time are available. Thedatficells can exist in a “space” of
one, two, three, or more dimensions, although dimensiceatgr than three are difficult to visual-
ize and also expensive to simulate. Typical cellular autaroéinterest are in one dimension (such
as the fundamental Wolfram cellular automata) or two dirfe@rss(such as the sandpile model to
be discussed below). Another two-dimensional cellulaoenatton is the Game of Life, which has
been widely popularized and offers evolution patterns Wit visual interest]4].

The most common setting for cellular automata is the simplggSian lattice (e.g., a square
lattice in two dimensions); this is the case we investigate halthough other regular lattice types
are possible. Also, because a finite lattice must be usedyirsianulation, the treatment of the
boundaries of the lattice must be specified. The simplesoagh, which we adopt, is to impose
“periodic” or “toroidal” boundary conditions; that is, tHattice is conceptually wrapped around
so that each cell on a boundary is considered adjacent toothesponding cell on the opposite
boundary. A key advantage of periodic boundary conditisribat all cells are equivalent and the
lattice structure is invariant to arbitrary shifts, justfasa hypothetical infinite lattice.

13



The procedure for “updating” a cellular automaton (evadvin the next discrete timestep) is
usually specified via a function that determines the nevesifis given cell based on the current
state of that cell and its nearest neighbors (for our puiggdseneighbors in @-dimensional Carte-
sian lattice; in some cases, such as the Game of Life, thgdda” neighbors are also included).
The limitation to nearest-neighbor dependence reflectetadity of interactions in physical space,
and also reduces the number of possible cellular automaiecifecations. A further assumption
is that the updating function is the same for all cells; thiskes the system dynamics (like the
lattice structure) homogeneous in space, and allows thefusathematical descriptions such as
Fourier analysis. Conceptually, the updating functiongplieed to all cells in parallel, using the
current states, and the new states all take effect simwteste This synchronous updating is actu-
ally implemented in a standard computer by allocating arseeanemory area for the new states,
storing in that area the result of the updating function stecell to avoid overwriting the current
states, and finally treating the new memory area as encoldagtate of the system at the next
timestep (the old states can then be discarded). So far veedeseribed a cellular automaton with
deterministic behavior. A cellular automaton can also Hdendd so that the result of the updating
function depends not only on the given cell and its neighbous on an additional input that re-
flects an external perturbation, such as a random numbemthaduces stochastic behavior. We
refer to this external input astagger and assume that it is also an integer.

Thus, with the usual simplifying assumptions, a cellulaoawaton model for @-dimensional
lattice is specified by giving an integer function (af-2 1 integer variables and possibly an addi-
tional trigger), used for updating each cell. If the cells entended to have a finite set of possible
states, then this function must have the property that #sltédelongs to this set when its inputs
do; as a result, proper initial conditions (valid states lbtalls at a starting time) will result in
evolution that remains in the assigned set. The simpledtin@ set of states is the Boolean case
with two possible values, say 0 and 1. This case already alkmmne rich dynamics for cellular
automata3d4], and it also provides a starting point for another protetgpstem to be discussed in
Chapter3, namely Boolean networks, which keep the properties otitaglautomata we have de-
scribed (with deterministic evolution), except that thétess do not have identical updating rules,
and the communication among them does not follow a lattieecsire, but rather some arbitrary
connectivity. However, for cellular automata, it is usefuicompensate for the simplicity of the
lattice structure by allowing a larger state space. We negtidbe such a model, which we adopt
as our prototype cellular automaton.

2.2 The Sandpile Model

2.2.1 Definition of the Model

The starting point for our prototype cellular automatorhis Bak—Tang—Wiesenfeld (BTW) sand-
pile model @], which is defined on a two-dimensional square lattice. Thadel represents an
idealization of the complex behavior of a pile of sand, whdtomes unstable when its slope
exceeds a critical value. As a result, if sand is randomlyedd a pile in various locations,
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“avalanches” eventually occur; such an avalanche condinmgil the slope is everywhere below
the critical value, restoring stability. Depending on tlka@ configuration at the location and time
of the perturbation, the avalanche may be localized or it sweggep over a large part of the system.
The sandpile model can thus offer an idealized representafia process of cascading failure, rel-
evant to many real-world applications. An additional imtpat property of the model is discussed
in Section2.2.2

As originally defined by BTW, the sandpile model does not clatgby conform to the defi-
nition of a cellular automaton, because the evolution mtace involves making a perturbation,
evolving the system until the states no longer change, amdrtraking the next perturbation. This
requires monitoring the system as a whole, whereas a aeflutamaton should have a consistent
local updating rule applied to every cell at every timesiapfix the discrepancy, we here define an
updating rule that receives a random trigger to determinetidr a perturbation is applied. This
trigger is an independently generated random number fdr ealt at each timestep, thus main-
taining locality. The result is that perturbations are &apht events that form a Poisson process
in discrete space-time. If the density of this Poisson meds sufficiently low, each avalanche
is likely to run its course with little interference, and thetcome will be similar to the globally
monitored case.

A further modification we introduce is in the details of thetpebation. In the existing sandpile
model {], each perturbation adds 1 to the value of the chosen cellesenting the addition of a
grain of sand. As a result, the total number of grains of sartieé system would increase with
time; this is compensated by allowing sand to disappeareabttundaries of the lattice, as if it
were falling off the edge of a table. Because we prefer to watk periodic boundary conditions,
we use a perturbation that can both add and remove grainsdf $demarkably, a very simple
perturbation can accomplish this: simply not updating tivergcell and instead keeping its state
unchanged. As discussed in Secth@.2 this choice preserves the main behaviors of the BTW
model but leads to additional, richer phenomena.

Our sandpile cellular automaton model is as follows. On adimensional lattice with peri-
odic boundary conditions, the state of each ¢ely) is z(x,y) € {0,1,...,7}; we define our model
to maintain this state space, whereas the BTW model doesestnibe a bound on possible states.
Our normal updating rule is precisely that of BTW,

2(xy) — 2(x,y) 4 3200 y)| + | 3z(x— Ly) | + [ 22(x+ Ly)| + [ z(x y— 1)) + L%z(x,y+( 1)), |
22.1

where| | denotes rounding down to an integer. This rule maintainsstate spac¢0,1,...,7},
because the sum of the first two terms on the right-hand side §§,1,2,3}, and each of the
remaining terms is if0,1}. Also, as noted by BTW, the rule results in conservation eftttal
amount of sandZ = y,,7(xy), because when the change in this sum is evaluated, each term
L%rz(x, y)| appears once with coefficientd and four times with coefficient 1. Intuitively, the rule
describes an avalanche process in which a cell githy) > 4 transfers one unit of the conserved
guantity (one grain of sand) to each of its four nearest rEgh

To introduce perturbations, we allow each update to leawdatal state unchanged,
z(x,y) < Z(X.y), (2.2.2)
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instead of applying Eq2(2.7), if the trigger so directs. This occurs with a fixed smalllpabil-
ity (an independent random choice for each cell at each tapgs The triggering of this “non-
updating” rule for a given cell has no effect on the updatihgeghboring cells. As a result of a
non-update ofx,y), the sumZ changes by

AZ =4 32(x.y)] — [32x=Ly)] — [32x+ Ly) | — [32(xy—1)| — [32(x Y+ 1))
€ {-4,-3,...,4}, (2.2.3)

i.e., the negative of the amount by whiefx, y) would otherwise have changed. Thus the cellular
automaton is driven by both adding and removing various arsoof the conserved quantity.

2.2.2 Self-Organized Criticality

The BTW sandpile model was introduced to illustrate the thew concept of self-organized
criticality. This refers to systems that, from random mlitstates, spontaneously tend toward a
highly structured dynamic regime. Such a regime involveslar phenomena occurring on a wide
range of space and time scales, with a scale-invariant plawedistribution of activity over these
scales. A self-organizing cellular automaton, despitdithigation to nearest-neighbor interactions
at each step, develops coherent long-range structuresimeerThe behavior is called “criticality”
because it is analogous to the scale-invariant behavioysiemis in statistical physics, such as
magnets and fluids, at a thermodynamic critical point (sdemder phase transition). But unlike
thermodynamic critical behavior, which requires fine tgnai parameters such as temperature to
reach a phase transition, the key property of self-organiziticality is that a system is attracted
to such a regime spontaneously under generic conditions.

The self-organized criticality of the BTW sandpile modelswemonstrated through a power-
law distribution of the size of regions affected by avalaexH], a somewhat indirect property.
However, a more conventional diagnostic of critical bebaim statistical physics—a power-law
correlation function (or power-law spatial Fourier spaot) of the state fluctuations—is not real-
ized in the BTW sandpile model, with only short-range catiehs developing between cell states
[7]. Remarkably, our variant sandpile model produces lomgegpower-law correlations, closely
resembling those of thermodynamic critical points, butheitt the associated fine tuning. This
richer scale-invariant behavior is shown through numésraulations in Chapte8.
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Chapter 3

Boolean Networks

3.1 Background

Boolean networks, like cellular automata, are a particiylae of discrete dynamical system. They
were first proposed by Kauffman as random models of genegiglaitory networks21]. They
have a simple structure yet rich dynamical behavior and haesn used as models of complex
dynamical systems in a number of different fields: genettevoeks [22], the theory of evolution
[22], social scienced9], biochemical reaction pathway8][ and others.

A Boolean network can be represented as a directed graph \Eeastex of the graph has a
Boolean state value (0 or 1). The ability to specify an aabjticonnectivity pattern among vertices
allows Boolean networks to model diverse real-world systemhich may not be well represented
by a lattice. The most commonly considered graph topologylte in what is called a Kauffman
network orN-K network. For such a network, there dfevertices (nodes), and each vertex has
K in-neighbors. It is common to select the neighbors and tiialistates randomly. The random
approach can be used to model natural systems (such asogeugtiatory networks) that surely
have a structure that is not completely random, but one shaimplex and largely unknown.

Each vertex or node sends its value to all its out-neighlieash node also has a transfer func-
tion, a Boolean function of its inputs that is typically alemdomly chosen. At each timestep, all
nodes are updated in parallel by replacing each node’s \mlube value of the node’s transfer
function applied to the node’s inputs. Asynchronous updptif the nodes has also been investi-
gated [L7]. The transfer function of a given node, once chosen, caafberichanged (thguenched
dynamic$ or changed at each timestep (drenealed dynamigsIn the majority of the work that
has been done on Boolean networks, and in our work, the gafusfctions are left unchanged.

The dynamical behavior of the network can be described mgef its cycles, attractors, and
basins of attractiond. Assume the transfer functions are fixed. A network\ohodes has"
possible states, and the rule for evolving the state vatidsterministic. Therefore after a certain
number of steps<( 2V), the set of state values must start repeating. Each uniggle of state
values into which the network can fall is an attractor, areldét of all initial states that lead to a
given cycle is that cycle’s basin of attraction.

It has been observed that Boolean networks exhibit thresgshdermed quiescent, critical,
and chaotic. In this, they show similarity to the percolatgroblems of statistical physic8][
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In the quiescent phase, there are few cycles, the cyclesttebd short, and most of the state
values end up fixed. In the chaotic phase, the average cyaghlgrows exponentially witlN,

and most values keep changing. In the critical phase, the &sregths and the average number of
attractors increase algebraically with Kauffman hypothesizes that biological systems operate in
the critical phase, “on the edge of chao2Z].

The phase of the network depends on the number of in-neighgoand on the probability
with which the transfer functions output true or false valuiéthe transfer functions are chosen at
random from all possible truth tables witk 2ows, then the network exhibits the quiescent phase
for K < 2, the critical phase fdk = 2, and the chaotic phase fir> 2. Another way to describe
the network is in terms of a collection of the time series al@states, or alternately in terms of
their frequency spectra. The state values tend to chang#iyapthe chaotic phase, slowly in the
guiescent phase, and at an intermediate rate in the citinzede.

In our work, we assign edges randomly in such a way that thehginas a specified average
number of in-neighbors per node, but each node need not havgatme number of inputs. For
example, if the specified average i$2every node would have at least two incoming edges, and
approximately half the nodes would have three.

An interesting example of the use of Boolean networks to mademplex system is found in
a biochemistry applicatior9], which used Boolean networks as a coarse-grained appabixim
of the more detailed differential equation network modethef fission yeast cell cycle control net-
work. The Boolean model abstracted out time informationsuaicessfully modeled the reaction
kinetics, reproducing the sequence of cycle states andpmeelicting the effects of mutations.

3.2 Robustness Properties

Because Boolean networks are mathematically tractablelgstly related to real-world systems
such as biological regulatory networks and digital cirguthey provide a convenient setting for
the study of robustness. From a biological perspectiveptbkblem can be formulated as follows:
A specification of a Boolean network (topology and transterctions) models a genotype. The
expression of this genotype is carried out by evolving thelBan network until it reaches an
attractor, which models a phenotype. The biological fitreé$kis phenotype is evaluated using an
objective function, which in the simplest case is itself Bam (fit or unfit).

For mutation and natural selection to operate efficientig mecessary that almost all random
changes to the genotype (mutations) result in a phenotybatili satisfies this objective function.
This allows mutations to explore the possibility of keepumgwith a slow drift in the objective
function, or satisfying additional, stricter objectivenfitions, while almost always remaining fit
according to the original objective function. Otherwiskemost mutations resulted in an unfit
phenotype, then very little promising variation would baitable, mutations would not be useful,
and species adaptation via natural selection would grirzdHailt.

Thus robustness is a necessary condition for biologicdlatadity, and can serve as a marker
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of systems that have an organic character. As discussediin®6.2, we have translated the idea
of robustness into precise mathematical constraints osttiaeture of certain Boolean networks
and the objective functions they satisfy. This result camtfuide the design of models for systems
that are known, or desired, to exhibit robustness to faslure
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Chapter 4

Renormalization

4.1 Background

The emergent behaviors of a complex system generally beapmarent only in a large system
and after many timesteps. Indeed, the real-world systengseaitest application value, whether
physical, cyber, or social, undergo an enormous numbereshehtary local interactions in the

course of building up their rich global dynamics. The largeniber of degrees of freedom in

these systems implies a severe cost in computational r@sotor a direct simulation, especially
when many simulations are being performed to explore paenspace or to gather statistics.
Consequently, almost all practical simulations use somed kif reduced model. Even models
accepted as “complete” descriptions of a system are uswalllyfounded abstractions of deeper
processes (e.g., the equations of fluid mechanics sumnthgzeffects of molecular dynamics).

For complex systems, the construction of successful retionmalels has typically been an ad-hoc
process requiring a great deal of insight and experiendedptoblem domain. One of our goals
has been to develop a more systematic and validated appiaacteating coarse-grained models
of complex systems.

A useful framework for simplifying the description of inttably large systems is available
from theoretical physics in the form of “renormalizatiofhis technique seeks to replace the ac-
tual system with a model of reduced complexity, lying witeome specified class of models. The
form of such a reduced model is often taken as a straightfohganeralization of the underly-
ing system dynamics, with a number of adjustable parameatehsded. In the process, many of
the original degrees of freedom are omitted through sonmma fofrsampling or averaging; those
associated with the large-scale phenomena of primaryesiterre retained. The method is suc-
cessful when the effect of the omitted degrees of freedonppscximately equivalent to that of
substituting new values for the model parameters. Thessnpeers are thus “renormalized” in
the reduced description. Renormalization is expected tads useful when the underlying inter-
actions exhibit locality, so that a block of nearby degrefelseedom behaves approximately as a
unit—allowing a summary description of its internal statel digher-level interactions.

This coarse-graining process can be applied iterativedyihg to the “renormalization group”
concept, which describes a repeated transformation or *flothe model parameter space as de-
grees of freedom are progressively omitted. At each stdp,sonall blocks of the current degrees
of freedom need be considered, and their effective dynan@osbe determined more tractably

21



by taking advantage of the locality of interactions. Thus tenormalization group is a mathe-
matical device for reducing the number of degrees of free@@mming out) while preserving
some aspects of the dynamics. The original motivation foommalization-group methods arose
in statistical physics, where a large number of interactiagrees of freedom (even with simple
interactions, such as those between nearest-neighbos atoancrystal lattice) can lead to criti-
cal fluctuations on a wide range of length and time scalesoReaization-group methods have
since been applied extensively to phenomena with similarasteristics, as in high-energy parti-
cle physics and fluid turbulence. In many such areas, themalzation group can be treated with
considerable rigor, and it can be shown that all but a smafiber of parameters (describing pos-
sible interactions) become negligible upon repeated eegirgining. Such rigorous justification of
reduced models is possible because the systems are defitéghlby regular structures, such as
functions in Euclidean space.

To determine whether renormalization remains useful in eengeneral modeling context, we
have prototyped representative complex system modelatbdioth tractable and relevant to San-
dia mission applications, and quantified the effect of reraization on the predictive accuracy
of these models. The renormalization itself has been béedaout computationally, by simu-
lating the behavior of blocks of degrees of freedom underreetyaof conditions and fitting the
coarse-grained model parameters that best reproduceehavior. The stepwise process of the
renormalization group makes these model-building sinnattractable because small blocks are
used at each stage. We next describe the details of our ratipation method for cellular au-
tomata and Boolean networks. Results of our computatieséd of this approach are presented in
Chapterb.

4.2 Application to Prototype Models

4.2.1 Cellular Automata

A previous application of the renormalization group to gkl automatag0] considered special
cases in which renormalization can be performed rigoroasky the resulting coarse model is
exact. We wish to generalize renormalization to other kiofisellular automata for which an
empirical, statistical approach is needed. As is usualerréimormalization of lattice systems, we
wish to create a model on a coarser Cartesian lattice, edlabf @éhich corresponds to a block of
cells in the original lattice. The motivation for this is tithe large-scale emergent behavior can
be adequately discerned from a coarse history that sumesahe states within each block. The
traditional summary description in physics is a block agerdut here we use a block sum so that
the result remains an integer.

Our approach is to implement the goal of renormalization-€lifig a coarse model that best
reproduces the system'’s large-scale behavior—as a nuahepitmization problem. Such an opti-
mization cannot, of course, explore the space of all coaté@/coarse models to find the best one;
rather, the investigator must define a limited family of @@amodels, with a reasonable number of

22



1 T 1T 1 | | |
(I)riglinall triggqr (}oarsel triggelr

Original CA Derived CA Coarse CA

~
~
-

Initial state only

Comparison
function Parameters

Figure 4.1. Basic scheme for computational renormalization of
cellular automata.

free parameters to be optimized. The choice of family mayithedaby general principles such as
symmetry, or by expert knowledge of the system’s behavibis &pproach is general and does not
require analytic tractability of models. However, it raghe question of how renormalization can
make a simulation more computationally feasible if a sirtiataof the original model is needed
for comparison to optimize the coarse model. The answeraisthie optimization can be based
on a much smaller simulation, in lattice size and in timestépan the main simulation for which
results are needed.

The computational renormalization process is shown scheatig in Figure4.1 The follow-
ing items are specified in advance to define a particular neakization problem:

¢ the updating rule for the original cellular automaton,

e a parameterized updating rule for the coarse cellular aaitom

¢ the sizes of the original and coarse lattices to be used ton@ation,

e a method of populating the original cellular automaton wihdom initial states,

e a method of generating trigger values for the original daflautomaton (if applicable),

e a comparison function for quantifying the discrepancy leetwthe coarse predictions and
the actual “derived” block sums of the original cellular @uiaton,

e the number of simulation timesteps to be carried out durptgr@zation, and
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e the number of separate simulations, starting from randatmalistates, to be used in evalu-
ating each candidate coarse model (to average out stakifftictuations in performance).

Given trial values of the coarse rule parameters, the asdignmber of simulations are performed,
each consisting of (conceptually) parallel evolution & tiriginal and coarse cellular automata.
For each such simulation, random initial states are placeth® original lattice (to favor param-
eter values that perform well in a broad range of situatioasyl their block sums are placed on
the coarse lattice, so that the coarse cellular automasots $tom an equivalent initial condition.
Both cellular automata are then simulated using their i@sperules for the assigned number of
timesteps; at each timestep, a “derived” lattice of the ssimeas the coarse one is populated with
block sums from the original cellular automaton, represgnthe true coarse states that should
ideally be reproduced. The comparison function accumsiltte total discrepancy between the
derived and simulated coarse states over all timestepd sfralilations with given parameter
values. This discrepancy is then treated as an objective@iumand minimized with respect to
the parameters using a standard numerical optimizatiarighgn. The parameters are treated as
floating-point numbers; although their effect on the timeletion of the coarse model is ulti-
mately discrete, their typically wide range of possibleues and the statistical averaging of the
simulations result in somewhat smooth overall behaviohefdbjective function. Nevertheless,
gradients are not available and the detailed form of theatigfunction is not locally smooth, so
we use the Nelder—Mead simplex method for optimization.

If a trigger is needed (as for our sandpile model), a latsgeapulated at each timestep to pro-
vide trigger values for the original cellular automatond #ime block sums are used as trigger values
for the coarse cellular automaton. Thus the coarse cellwisbmaton is being asked to track the
large-scale behavior as well as possible with access to@symous, appropriately coarse sum-
mary of the particular external input values driving thegoral cellular automaton. This allows the
coarse cellular automaton to develop an accurate mode¢@éponse to individual perturbations,
even if they are stochastic. To reduce the effect of stasistiuctuations on the objective function
landscape, the random number generator is initialized aviiiked seed for each new set of trial
parameter values. As a result, the series of random inthiadlitions for the simulations, and any
randomness in the trigger values, will be identical for adlltparameter values. Otherwise, inde-
pendent fluctuations would enter each time the objectivetian was evaluated, and the landscape
would appear extremely jagged, frustrating numericalrojzation.

An alternative to optimizing the match of individual simtidan histories would be to generate
separate ensembles of simulations of the original and eaaltular automata, and compare only
statistical properties of the derived and coarse states, asi their spectra in space or time. This
would represent a goal of a different kind of predictivigyéring coarse models whose behavior
“looks right” statistically but need have no correlatiorthwthe behavior of the original model in
a particular realization. Such an approach is of limitedulsess because matching a chosen set
of statistical properties is no guarantee of matching sth@nd furthermore, accurate individual
simulations are often needed for real-world applicatioBg. using linked trigger values for the
original and coarse cellular automata and optimizing thechaf individual simulation histories,
we favor coarse models that reflect the underlying dynanmeadhanisms as accurately as possi-
ble. To the extent that individual realizations are reprmtlicorrectly, statistical properties will
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automatically follow.

In the absence of a perfect coarse model, however, our chbmgjective function will have
a systematic effect on statistical properties, which iategl to the number of simulation timesteps
used for optimization. An imperfect coarse model will irtelaly lose its correlation with individ-
ual histories of the original cellular automaton beyond edimescale, the predictivity horizon.
(This concept is illustrated by weather forecasting mqdelsch can give useful predictions only
for approximately a two-week period.) If the optimizatioses simulations much longer than this
timescale, then the coarse model cannot generate any ngéarpnediction for most of a simu-
lation and, to reduce its discrepancy, is driven to make aommittal prediction that tends to a
uniform average state for all cells (analogous to the usdirofte averages as the best alternative
beyond the horizon of weather forecasts). Thus, the lorfgepptimization simulations and the
more imperfect the coarse model, the more suppressed istémesity of dynamics in the optimized
coarse predictions, resulting in smaller statistical measof variation compared to those derived
directly from the original cellular automaton. On the othand, if the optimization simulations
are very short, such as a single timestep, then other issiges @he performance being optimized
is then tied strongly to the imposed distribution of randamtial states, and may not carry over
to longer simulations in which the cellular automaton rekato its own characteristic distribution
and statistical correlations. Also, the coarse model magiolan excellent match, because only
relatively slight changes in block sums over a single tiresteed to be predicted, but may not be
well optimized to maintain accuracy for as long as possivtlE¢h may involve stability properties
in addition to single-timestep accuracy). Thus simulaiaith a duration of the same order as the
predictivity horizon are most useful for obtaining optincalarse models.

For our sandpile model, the details of the renormalizatmreme are as follows. The original
cellular automaton uses a trigger value of O for the normehtipg rule 2.2.1) and 1 for the non-
updating perturbation. Each block-sum trigger value far ¢barse cellular automaton therefore
indicates the number of perturbations in the block; becqestrbations are rare, this number
is almost always at most 1. The properties of the sandpileeinitéit must carry over to the
coarse model are the symmetry among the four directionsisdiare lattice (isotropy), and the
conservation of the sum of states (total amount of sand)drabisence of perturbations. A simple
generalization of the rule2(2.1) that preserves these properties is

Z(x,y) = z(x,y) —4f(z(xy)) + f(z2x=1,y)) + F (2(x+1,y)) + f(2(x y—1)) + f(z(x,y+1)),
(4.2.1)
wheref is an integer function; the original rule h&&z) = L%ZJ. Note thatf (z) can be interpreted
as the number of grains of sand transferred by a block to ehith fmur neighbors. To give a
tractable number of parameters, we take a coarse rule with

z— Ao
LR
whereAp and By are real numbers. Repeated coarse-graining can be pedomitt@n this rule

family by using an optimized coarse rule as the original fatea further optimization, thus ob-
taining a new coarse rule applicable to even larger blocks.

(4.2.2)

An additive constant inf has no effect on the updating rule, and so addition of an anteg
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multiple of Bg to Ag leaves the rule unchanged. The graptf () for Bo > 1 consists of upward
steps of+-1 at approximately equal intervals bfyiven byBy. If the range of relevart values is
much greater thaBg, then any change iAg should have relatively little effect, merely shifting
the phase of these steps. On the other hand, in the origilealwhere 0< z < 7, there is only
one step, which can be recreated for &y> % by appropriate choice ofg (e.g.,Bg = 4 and
Ao = 0). The sandpile model’'s preservation of a finite state spmckie to the nondecreasing
property off(z) = L%ZJ’ which results in the largest valuesohever increasing further (and the
smallest values never decreasing further). Our genedatiaarse rule provides a similar stability
whenBgp > 0, but we do not impose this as a constraint, instead relymtihe objective function
to penalize the divergent evolution of an unstable rule.

Whereas the original cellular automaton performs a noratgtbr a trigger value of 1, we
expect that some other strategy is appropriate for the emacglel, because only one of the under-
lying cells of the block is responding to such a trigger areldthers are updating normally. Thus
we further generalize the coarse model by performing an tepaaalogous to Eq4(2.1) also
in the case of positive coarse trigger values (which will @stnalways be 1), but using different
parameteré\; andB; in the functionf.

For a coarse model based on 2 blocks, we can make an educated guess of reasonable initial
parameter values for optimization. In the normal updatiage¢ the number of grains of sand
transferred to all block neighbors is 8 if all underlyingtstaare between 4 and 7 (typical block
sumz= 22), is 4 if two states are between 0 and 3 and two are betweed 4 @ypical block sum
z=14), and is 0 if all states are between 0 and 3 (typical block st 6). Thusf(z), the number
of grains transferred to each block neighbor, should eqdat 2 near 22, equal 1 for near 14,
and equal 0 foz near 6. A similar argument for the triggered case, where thmlge underlying
cells update normally, shows that in that cd$e) should equal 1 for near 17 (where on average
% of the states are between 4 and 7 %rmre between 0 and 3) and equal O Zarear 6 (where all
states are between 0 and 3). Example parameter values tihaiskt conditions are

(A, Bo,A1,B1) = (2,8,0.67,10.67). (4.2.3)

Such values are not necessarily optimal because the typad sums quoted for various patterns
of underlying cells are also consistent with different gats, reflecting the loss of information in
coarse-graining.

4.2.2 Boolean Networks

The renormalization of Boolean networks follows most of siaene principles as for cellular au-
tomata and, as discussed in Chagtas performed with the same software framework. However,
some differences of interpretation apply. A trigger is needed because the Boolean networks
commonly studied have deterministic time evolution. SiBoelean networks usually associate a
different updating rule with each node, we take the speaifie to be encoded in part of a node’s
state value—a part that does not change with updating (Beoaa use the quenched dynamics),
but determines the updating of the Boolean bit in the statiyp& of Boolean network is not con-
sidered to be a specific assignment of updating rules to nbdésather arensemblef such rule

26



assignments, as part of the generation of random initit¢staCorrespondingly, a renormalized
version of a Boolean network consists not of a specific sebafse rules, but rather ofraethod
that transforms specific rules on the original network irgedfic rules on the coarse network. It
is this method that contains parameters to be optimizedauerthe specific rules are part of the
state values, this method operates at the point of popgldtminitial states of the coarse network.
Unlike cellular automata, whose states are coarsenedsimighl a block sum, Boolean networks
require coarsening the specific rules at the same time (pipkes only when setting initial con-
ditions, since the coarse rules are automatically predetvereafter). The actual updating rule,
which plays the same role as a cellular automaton updatincfifun, is a rule fixed once and for
all, with no parameters. This master rule interprets theifipeule part of a node’s state, and eval-
uates the appropriate function of the Boolean bits of iteeighbors to replace the given node’s
Boolean bit. Because a Boolean rule for a node Witm-neighbors requires2bits to specify,
and we must carry an additional Boolean bit, standard 3#y#gers can store the required state
values provideK < 4.

Whereas lattice systems offer an obvious state-coarseqpgpach based on regular blocks,
the arbitrary connectivity of Boolean networks makes itlaac what groups of nodes should be
represented by the coarse network’s nodes. We expect ti@tmalization is most effective when
the node groups are highly connected internally and spacsginected externally, so that they
act as coherent entities. Thus we are faced with a graphedugtproblem; we have adopted
an implementation of a clustering algorithm based on thissitzal physics of spin glasse2§).
This algorithm is used for obtaining the coarse networkcstne, which is held fixed through the
parameter optimization process. We must then relate thessté the coarse network to those of
the original network. In principle, cluster sums could bedi$or coarsening the Boolean bits,
leading to a coarse model with integer states that is not &Bametwork. But for simplicity we
have maintained the Boolean nature of the network when enarg. Moreover, instead of using
the majority vote of all nodes in the cluster to determinedbarse Boolean bit, we have made a
different choice that may give better results. Because thr@ynodes with out-links from a cluster
can affect other clusters at the next timestep, we considenajority Boolean bit of these out-
facing nodes to be a more useful summary of the state of tiséecIurhis distinction does not arise
for coarsening of cellular automata intx2 blocks because all cells are automatically out-facing.

As mentioned, a method is also required for coarsening Bpd&molean rules. For this we
adopt a simple strategy. To tabulate the coarse updatingiumfor a cluster, we “excise” the
cluster from the original network and evolve it independestarting from the given initial states,
but supplying its external in-links with random Boolearshat each timestep. The key parameter
of the method is the number of timesteps for which these naridputs are held fixed before being
regenerated. Because the random inputs are a proxy for bawioe of the cluster’s environment,
the performance of the resulting coarse rule in a whole-ogtwimulation will depend on how
well this proxy reflects the typical dynamics of the inputstoluster. The optimization will have
the opportunity to tune the timescale parameter to the nitesttive value. Every step in the
evolution of the excised cluster contributes to a tabutatibthe coarse rule: Each coarse input
bit (arriving on a coarse in-link from another cluster) ikdga as the majority of its most recent
underlying random inputs, thus identifying a row in the lrtdble, and then the out-facing nodes
of the cluster “vote” on what the corresponding result of tbarse Boolean rule should be. The
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excised evolution is continued until the truth table acclatas a threshold number of votes for
either a 0 or 1 result in every row, and then the majoritiesiuheine the final coarse rule. This vote
threshold is also an adjustable parameter of the methotigmatise it mainly governs the trade-off
between statistical accuracy and execution time, we a#isigiixed value rather than subjecting it
to optimization.

The optimization process is carried out as for cellular mata. The various simulations per-
formed for a given parameter value start from various ihgiates and thus use different specific
rules from the assigned ensemble. For each simulatiom,thfanitial states (including rules) are
coarsened, the original and coarse networks are evolvethdogiven number of timesteps. Af-
ter each timestep, the coarsening of the original netwatdtes onto the “derived” network (for
comparison with the coarse network) applies only to the Bawlbits, because there is no point to
re-coarsening the rules. Correspondingly, the compafisoction ignores the rules in the coarse
network and simply compares the Boolean bits with those efdérived network. The baseline
discrepancy measure for a unhelpful coarsening correspngredicting half of all bits incor-
rectly, and discrepancies less than this indicate someesada tracking the original network’s
behavior. Although the optimization for Boolean networkgurrently one-dimensional and thus
a variety of other numerical optimization algorithms araikable, for simplicity and consistency
we continue to use the Nelder—Mead simplex method.
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Chapter 5

Software

5.1 General Description

We wish to experiment with complex systems expressed asonketwA network has a topology
given as a directed graph. Once established, a graph’sagpoémains fixed. Each node in the
graph contains a state value, and we wish to investigateviblateon of the state values in time.
There is an edge from node A to node B in the graph if node Asesahn influence the evolution
of B’s value. Each network type is characterized by a paedrcevolution rule, by which the new
value at a node is computed taking into account the valuesdt ef the node’s in-neighbors
and perhaps some additional characteristics of the nodealRie networks investigated so far,
we update all state values in parallel. Our particular gdeties in deriving networks that are
renormalized or coarsened approximations of an originekok. The coarsened version of a
network is in general parameterized, and we optimize owvevétues of the parameters to improve
the approximation.

Our code is written in C~ 2000 lines) but structured so as to give some of the advasitaige
object orientation. All networks, no matter what their taqgpes or updating rules, are covered by
one type, CXnetwork, and all updating rules are of one function type, @Xlate. A particular
advantage of this approach is that we can construct a sibggetove function, to be called by the
optimizer, that works for all networks.

The network data structure is laid out to facilitate this siated polymorphism. All network
state data occupies a one-dimensional array. Any furthectsire is expressed in the configuration
data, which is given merely as a void pointer in the data sirec Likewise, parameters used for
the updating rule are given in an array of type @Xrameter (defined as a double), with the length
of the array and the meaning of its elements left undeterthiffdne network data structure also
contains a function pointer to the function that returnslisteof neighbors of a node, to be filled
in with a pointer to a function that takes the particular r@tatopology into account.

In order to introduce a new network type, it is necessary twide a way to create the net-
work, an update rule for the network, a neighbor list functior the network, a way to derive a
renormalized version of the network, and, since storageagement is done “by hand” in C, a
way to release the network’s storage. It may be necessamptude a separate updating rule for
the coarsened network, in the case that the coarse updategas optimizable parameters.
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We currently support the creation of two network types, tegqalic Cartesian lattice and the
Kauffman network (a type of Boolean network). The periodart€sian lattice may have any num-
ber of dimensions with any number of nodes in each dimensiorgimensional periodic lattice
forms a torus ind dimensions, in which each node has eighbors. The Kauffman network,
sometimes called aN-K network, has a graph in which each of tRenodes ha& in-neighbors.
We assign the links randomly.

For the periodic Cartesian network, network creation isdheshby the function CXperiodic.
cartesiancreate in module periodicartesian.c and network destruction is handled by the gener
CX_network destroy in network.c. The neighbor list function is @%riodic cartesiamneighbor
listin module periodiccartesian.c. The sandpile update rule,_ €xhdpileupdate in module sand-
pile.c, can be used for periodic Cartesian networks. A sgpaipdating rule, CXandpilecoarse
update, can be used for a renormalized periodic Cartesitavorie The update function uses the
state value at the node itself as well as the values at thélbeiong nodes. The renormalized
network states (block sums) are derived with function @2tiodic cartesianderive in module pe-
riodic_cartesian.c.

The igraph packagd], a high-quality software package originating in the HumgaAcademy
of Sciences for creating and manipulating graphs and reteasder the GNU Public License, is
used for the topology component of a Kauffman network. Goeabdf a Kauffman network re-
quires two steps. Cxkauffmancreate in module kauffman.c creates M topology and returns
an igrapht graph structure. CXjyraphcreate in module graph.c accepts the igraph structure and
returns a CxXnetwork. CXgraphcreate installs the igraphas its configuration data, allocates the
state data array, and installs the proper neighbor listtioncCX_graphneighborlist in module
graph.c. Doing the creation in two steps will make it easyutussitute other graph topologies (such
as ones constructed directly by igraph) if this becomesael®. The update function for Kauff-
man networks is CXbooleanupdate in module boolean.c. In a Boolean network, in adutioa
state value (a true/false value), each node has a transfetidu that is a Boolean function of the
inputs to the node. After an update, the state value at the isathe output of the node’s transfer
function applied to the node’s inputs. In our implementatibe transfer function is encoded in the
state data; thus the state data consists of two parts, tieevsiae proper and the encoded transfer
function. Renormalization of Kauffman networks is a thetep process. The topology coarsening
is done by function Cxgraphspinglass cluster in module graph.c, which returns a gtegttuc-
ture. Then CXgraphcreate in module graph.c is called to return a_@atwork structure with
the given topology. Finally, CXooleanderive in module boolean.c is called to derive the state
values of the coarsened network from the original netwdr&X_booleanderive is called with no
parameters, it derives only the 1-bit Boolean value at eadenif it is provided with parameters,
it also derives the transfer function at each node (see bielodetails).

To evaluate the performance of a coarsened networkp@jgctive in module objective.c re-
turns the total discrepancy, over a specified number of sitimuns, between the predicted coarse
states and those derived from the original network. In tliegss, CXobjective also accumulates
frequency spectra of node histories and/or spatial speftsaapshots of the network (the latter
meaningful only for a Cartesian lattice). Spectra are cdegbusing fast Fourier transform rou-
tines from the GNU Scientific Libraryl]; our implementation assumes that the relevant sizes in
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space and time are powers of 2. The discrepancy is used abjduie function by CXoptimize
in module optimize.c, which calls the Nelder—Mead simplestimod for numerical minimization,
also provided by the GNU Scientific Library.

5.2 Description of the Individual Modules

The following gives a brief description of the functions &cé module:

boolean.c

e CX_state CXbooleanupdate(CXstate **list, CX_ parameter *p, CXstate trigger);

Updates a node of a Boolean network, using the state valuasotle’s in-neighbors and
the node’s Boolean transfer function to determine the reodew value.

e double CXbooleandiscrepancy(Cxnetwork *netl, CXnetwork *net2);

Computes the distance between two Boolean networks witkathe layout by counting the
number of nodes whose Boolean state bits differ (ignoriegtainsfer functions that may be
encoded in the state data).

¢ void CX_booleanderive(CXnetwork *orig, CX network *derived, CXparameter *p);

Derives the state values of a coarse (derived) network fhaee of a fine (original) network.
The state values have two components, a Boolean transferdarand and a Boolean value.
If the parameter argument is null, only the Boolean valueeisveéd. Otherwise, the coarse
transfer function is also computed by simulating the evoiubf each coarse node (cluster).
The fine nodes making up a coarse node are provided with rangmrts on the incoming
edges from outside the cluster and updated a number of tinmegg the count of true
and false values in the out-facing nodes after each updepe &tsing the correspondence
between coarse and fine edges, each set of random inputgrigreied as a set of coarse
inputs, corresponding to a row in a truth table for the coarsde. When enough true and
false counts have been collected in each row of the trutle tdbé coarse transfer function
for the node is determined. There are two parameters in ttaarEder array: the number of
steps to evolve the fine nodes within a coarse node betwegmasmnts of random inputs,
and the minimum number of true or false values needed in eaglof the coarse node’s
truth table.

compare.c

e typedef void (*CXrandom)(CXnetwork *net, CXparameter *p);
typedef void (*CXderive)(CXnetwork *orig, CXnetwork *derived, CXparameter *p);
typedef double (*CXdiscrepancy)(CXnetwork *netl, CXnetwork *net2);
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Function types for functions called by the compare functiorder, respectively, to as-
sign random values to a network, derive coarsened states rietwork, and compute the
difference (or distance) between the states of two networks

struct CX.compareclosure;
double CXcompare(CXcompareclosure *c);

Using items from the closure data structure, updates thenBiwork according to the fine
update rule, updates the coarse network according to thieecapdate rule, derives a coars-
ened network from the fine network, and compares the coata®rieto the derived network
using the discrepancy function. The discrepancy is accatedlfor an assigned number of
timesteps. If the closure contains a non-null sampler fancCX_compare uses it to popu-
late the fine trigger network, which it then coarsens to peeducoarse trigger network (used
in cases where an update function requires a trigger argursae below). If instructed,
CX_compare also records node histories, and accumulatesisgagictra of snapshots, for
the coarse and derived networks.

graph.c

gsl.c

CX_network *CX graphcreate(igraptt *graph);

Given a graph structure (as created, e.g., byKaXffmancreate), creates a network having
the topology of the graph.

CX_state **CX_graphneighborlist(CX_network *net, unsigned node);

Returns the list of in-neighbors of a given node of the nekw@rhere the given node is
considered to be the first “neighbor” in the list.)

igrapht *CX _graphspinglasscluster(igrapht *orig, CX_parameter *param);

Coarsens a given graph structure using the igmaghmunityspinglass function of the
igraph package. The parameter array contains three paenet suggested number of
nodes of the original graph per node of the coarsened grapbadge threshold giving the
minimum number of (directed) edges of the original graphdieeeto justify creation of an
edge of the coarsened graph; and an edge limit, the maximuambewof (incoming) edges
that any node of the coarsened graph may have.

struct CXobjectivegsl.closure;
double CXobjectivegsl(const gshector *x, void *v);

Function called by the GNU Scientific Library optimizaticoutine. It serves as a wrapper
for CX_objective function, which it calls.
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kauffman.c

e igrapht *CX _kauffmancreate(unsigned n, double Kk);

Creates and returns a graphrohodes, each with an averageloin-neighbors drawn in-
dependently and uniformly from thenodes. Each node has a probabikty |k| to have
| k] + 1 in-neighbors instead gk].

e igrapht *CX _kauffmandestroy(igraph *graph);

Frees the memory used for a Kauffman graph.

network.c

All networks, no matter what their topology, are accommeddty the same data structure having
the same components: an array of state values (of typest@t¢), an undefined (void *) data

structure defining the connectivity, an array of parametess may be used for the updating rule
(of type CX parameter), and a function pointer to the updating rule todwsel for the network.

e CX_network *CX_network destroy(CXnetwork *net);

Frees the memory used by the network (for state data arraganfdjuration data).

e double CXnetworkdiscrepancy(CXnetwork *netl, CXnetwork *net2);

Computes the distance between two networks with the sanoeiiaysing a node-by-node
sum of squares of the differences between the state values.

objective.c

e struct CXobjectiveclosure;
double CXobjective(CXparameter *p, CXobjectiveclosure *c);

The objective function used for optimization of the coarséwork parameters. The first
argument contains the parameters being optimized. Usiteyatal functions specified in
the closure argument, the function populates a fine netwaolrsens it using the opti-
mization parameters, and computes the discrepancy bygallX compare with the CX
compareclosure element of the CX¥bjectiveclosure (see module compare.c, above)._CX
objective does this for a specified humber of simulations &tdrns the cumulative dis-
crepancy. Also, CXobjective accumulates frequency spectra of the coarseemad node
histories recorded by CXompare.
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optimize.c

e double CXoptimize (CXparameter *param, unsigned paraount, CXobjectivegslL
closure *c);

Calls the GNU Scientific Library’s Nelder—Mead simplex madtio minimize CXobjective,
and returns the minimum discrepancy value. The parametgy srused to input the starting
values and to output the optimized vales. Collection of sped requested, is suppressed
during optimization and performed only when converged patar values are reached.

periodic_cartesian.c

e CX_network *CX_periodiccartesiancreate(unsigned dim, unsigned *size);

Creates a network with a periodic Cartesian lattice topplog

e CX_state **CX periodiccartesianmneighborlist(CX_network *net, unsigned node);
Returns a list of a given node’s neighbors in a periodic Gaatelattice (in which the node
itself is considered to be the first “neighbor”).

e void CX_periodiccartesianderive(CXnetwork *orig, CX network *derived, CXparameter
P
Derives coarsened states for a periodic Cartesian latdtegank. Each node of the derived
network represents a block of nodes of the original netwitslstate value is the sum of the
values of the original nodes in the block. The parameteraravided is transferred to the
derived network.

e void CX_periodic cartesiandisplay(CXnetwork *net, char *title);

Prints the state values of a periodic Cartesian network.

random.c

e void CX_uniform_random(CXnetwork *net, CXparameter *p);
Initializes the state values of a network to values choséioumly at random from a range
specified by the parameters.

e void CX_booleanrandom(CXnetwork *net, CXparameter *p);

Initializes the state values of a network to randomly sel@®&oolean values, with the prob-
ability of 0 given by the parameter.
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sandpile.c

e CX_state CXsandpileupdate(CXstate **list, CX_ parameter *p, CXstate trigger);
Updates a network node according to the sandpile rule.

o CX_state CXsandpilecoarseupdate(CXstate **list, CX_parameter *p, CXstate trigger);

The coarse version of the sandpile rule suitable for a caatsaetwork. Uses four parame-
ters whose values are subject to optimization.

update.c

e typedef CXstate (*CXupdate)(CXstate **, CX parameter *, CXstate trigger);
CX_network *CX_networkupdate(CXnetwork *net, CXupdate rule, CxXnetwork *trig-
ger);

The function to call to update any kind of network. The cafterst provide the updating rule
(a function pointer); a particular rule may also requireigger network of the same layout
whose state values are used in determining how to updatdaredieidual node.
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Chapter 6

Results

6.1 Computational Analysis of Renormalization

6.1.1 Cellular Automata

We performed computational experiments on the renormadizaf the sandpile model described
in Section2.2, using the approach described in Sectb®.1 We performed six stages of renor-
malization, each coarsening a 166 lattice to an & 8 lattice composed of 2 2 blocks. The
lattice sizes were chosen small enough to allow efficienuktion in the optimization process
but large enough to make finite-size effects reasonably paitant. In the first stage, we took our
sandpile model as the original cellular automaton and apédhthe four parameters of the coarse
sandpile rule starting from the trial value4$.2.3. In each of the remaining stages, the coarse
sandpile rule with the previously optimized parameter galwas taken as the original cellular au-
tomaton, and starting from these values, new parameteevabere optimized for a furthers22
coarsening. The probability of a trigger value of 1 for eaeh of the 16x 16 lattice was always
taken as M1, so that two or three perturbations occurred in the egyiséeem on a typical timestep.
The discrepancy of derived and coarse states was computiee sism of squared differences. All
objective function evaluations used 100 simulations framdom initial conditions for statistical
averaging. Because the range of typical state values chamtferepeated coarsening, we used a
different distribution of random initial states for eaclage. Starting with the range of 0 to 7 for
the sandpile model, we increased the midpoint of the rangefagtor of the cumulative number
of original cells coarsened into the current blocks &,48, ...), and increased the width of the
range by the square root of this factor. In this way, we edehthe typical range that would result
from block sums of approximately independent cell states.

As discussed in Sectiof 2.1, the number of timesteps used for the optimization simonteti
affects the behavior of the resulting coarse model. We nmiedsach coarse model’s performance
by converting the objective function value into arror ratio, the ratio of its discrepancy to the
discrepancy of a naive model that predicts, for each tiepest uniform average state value for all
cells. For very short simulations, this ratio is small, hesmeven keeping the coarse initial state
unchanged is a much better prediction than a uniform stabe.véry long simulations, beyond
the predictivity horizon, this ratio is approximately 1,caese the optimal coarse model is close
to the naive one. Since the successive coarsenings of tlapikamodel represent larger and

37



Table 6.1. Optimized parameters for six renormalization stages
of the sandpile model.

Block size Timesteps Ao Bo Al B1 Error ratio
2x2 3 186 826 088 1088 058
4x4 8 —4.09 1805 —-2.97 1271 025
8x8 22 521 2256 -1.13 1295 035

16x 16 61 —-3.03 2466 —2.40 1234 059
32x 32 170 3176 4439 2159 1146 052
64 x 64 475 3686 9157 -14413 8109 038

larger blocks of the original cells, they have a longer amibkr predictivity horizon. This is
simply because it takes a long time for significant amountsaof to be transferred between very
large blocks through the nearest-neighbor interactiont@basic sandpile model. To optimize
the coarse models over a duration of order their predigthvirizon, we adjusted the growth of the
simulation durations with repeated coarsening until théniped models maintained an error ratio
of order 05. We found that each coarsening inta 2 blocks increased the predictivity horizon by
a factor of approximately.8. As a result, the greatest execution time was spent in shstage of
renormalization. The results of the renormalization staaye shown in Tablé.1

We then used the coarse rule from the second stage, repngsént 4 blocks, to simulate a
much larger sandpile model on a 25@56 lattice with a coarse 6464 lattice. The probability of
a trigger value of 1 for each cell of the 25&56 lattice was taken as410~°, so that two or three
perturbations occurred in the entire system on a typicakstep. We used only one simulation,
with 10° timesteps, to evaluate the objective function; in this wayexamined the very-long-term
behavior of the models. The error ratio wad1, i.e., the optimized coarse model had a greater
discrepancy than a naive coarse model, as expected beeauwgse performing a very long simu-
lation with a coarse model that was optimized for times withie predictivity horizon. The coarse
cellular automaton maintained vigorous dynamics even whahimately become uncorrelated
with the original cellular automaton. As a result, althoulyd accuracy of individual realizations
was lost, we found that some statistical properties weré rgploduced. Figuré.1l shows the
spatial power spectra of the cellular automaton statesaged over 1000 snapshots throughout
the simulation. The spectrum of the predicted coarse sf{gtegn points) has the same power-
law slope, approximately-1.8, as that of the derived states from the underlying sandpddel
(black points). For comparison, we also performed an eglatlg simulation of the basic (non-
renormalized) sandpile model on the coarsex@# lattice and plotted its spectrum (red points).
The large intensity of this spectrum at the smallest waxgtten(upper right part of the plot) re-
flects the tendency of the sandpile model to form “checkexbigaatterns of alternating high and
low values on the lattice. Only at larger scales (left pathefplot) is the power-law spectrum seen
from the basic sandpile model. Our optimized coarse moa&eher, correctly reflects the result
of coarsening with 4« 4 blocks, washing out the checkerboard patterns and eiightie power-
law spectrum in the same range of wavelengths as the spectloaiated from the sandpile model
on the underlying 25& 256 lattice. The lower amplitude of the coarse model’s spetteflects
its imperfect predictivity, which results in favoring sowlgat more cautious predictions during the
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Table 6.2. Optimized parameters for renormalization of five
Kauffman networks.

K Clusters Timescale Error ratio

1 82 12 011
15 87 7 040
2 87 2 064
2.5 89 1 Q74
3 96 4 082

optimization. The power-law spectra observed here demateghe claim in Sectio®.2.2that our
sandpile model, unlike the original BTW model, exhibitdicality in the conventional physics
sense.

6.1.2 Boolean Networks

We also performed computational experiments on the reri@atian of Kauffman networks, us-
ing the approach described in Sectth@.2 We created fiv&-K network topologies witiN = 500
nodes anK = 1, 15, 2, 25, and 3 average in-neighbors per node. As is common in stwdie
Kauffman networks, the specific Boolean rules were drawfoumily from all possible truth tables
and the initial Boolean bit values were drawn uniformly frg@1}. Under these conditions, as
described in Chapte8, Kauffman networks are known to exhibit quiescent, critiead chaotic
phases foK less than, equal to, and greater than 2. We wished to detemtiather our renormal-
ization method can automatically preserve these diffedentemergent behavior upon coarsening
the network.

The topological coarsening was performed by instructieggtaph clustering algorithm to find
as close to 100 clusters as possible but no more; thus appaitedy 5 nodes were used for each
cluster. To give the coarse network the greatest flexibititgproduce various emergent behaviors,
links were placed in the coarse network whenever any linkteglibetween clusters in the original
network, up to a limit of 4 coarse in-links per cluster (witteference for clusters between which
multiple links existed in the original network). The resudf coarse Boolean network is not in
general a Kauffman network, because the in-neighbors d¢f eaarse node need not be similar in
number or randomly distributed. Furthermore, the coarsear&’s rules were not randomly cho-
sen but determined by the renormalization process of Se¢tih2from a given set of rules for the
Kauffman network. In this process, the vote threshold watos#00. We performed optimizations
to determine the best values of the timescale parametetirfgtavith a trial value of 2), and mea-
sured the performance of the coarsening of each Kauffmavonketvith 300 simulations over 512
timesteps. Each simulation used a different set of randatialistates (rules and Boolean bits),
which were coarsened as described in Secti@®2 A coarse model’s error ratio was computed as
the ratio of its discrepancy to that of a model predictindg bahll bits incorrectly.

The results of the renormalization of each Kauffman netwamdk shown in Tablé.2 As
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K increases, the optimal timescale parameter mostly dexseawdicating that the evolution of
the network becomes more rapid. Also,Kasncreases, the error ratio increases, indicating that
an accurate prediction of the evolution over 512 timesteggoimes more difficult. Both trends
are as expected in the transition from the quiescent to thetthphase. As a diagnostic to test
whether the different phases can be distinguished in thegamebehavior of the coarse model,
we collected time series of the Boolean bits of each coarsle mand computed their frequency
power spectra, averaged over all nodes in each coarse thetiiigure6.2 compares the spectrum
of the derived Boolean bits from the underlying Kauffmanwak (black points) with that of
the Boolean bits predicted by the coarse model (green ppiisiseach value oK. The lower
amplitude of the green spectra, as for the sandpile modiécte the imperfect predictivity of
the coarse models. The black spectra show that the quiesciical, and chaotic phases of the
Kauffman network have distinct signatures—a few promimguotes, a proliferation of cycles, and
white noise, respectively. These spectra, moreover, stifppconcept that the transition between
phases is gradual rather than sharp, when a continuthvafues is considered. The green spectra
show similar distinctions between phases, indicating tttrenormalization process, despite not
making direct use of any information about the expected gnogs of Kauffman networks, has
preserved important emergent behaviors.

6.2 Functions Robustly Expressible by Boolean Networks

6.2.1 Introduction

The genotype of an organism is the hereditary informatiomtaioed in the genome, while the
phenotype is the set of properties actually exhibited byaitlganism and acted upon by natural
selection. This section is part of an effort to understang thie distinction between the genotype
and the phenotype is advantageous at all. The answer commpamposed is that the genotype-
phenotype distinction promotesolvability that is, the ability to acquire novel phenotypes through
genetic perturbations8f]. The argument is that Darwinian evolution is aided if theisture of
the genotype ensures that random genotypic mutations amttenotype but keep it viable. Such
robustness might not be possible if the phenotype were puitiitectly and hence the genotype-
phenotype distinction.

Formally, suppose that the phenotype is specifiech Bpolean characters, ..., x, € {+1}
and that the phenotype is viable exactly whixy, ...,x,) = 1 wheref : {+1}" — {+1} is a
constraint determined by the environment. The optimallgtignotype is, of course, viable and so
contained in the solution set d¢f(i.e., the set of inputs that evaluate to 1). The genotypenses
encoding ofxy,...,X,. The evolvability argument suggests that the genotypedingashould be
designed in such a way that random mutations to it keep thhegmonding phenotype viable, that
is, in the solution set of, with high probability. Otherwise, since natural selegt&iminates
unviable phenotypes, evolution toward the optimally fit pdtype would be highly unlikely or,
alternatively, require an unreasonably large populafidrus, robustness of the phenotype toward
random genotypic mutations is a necessary condition favatadity.
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We have yet to describe how the genotype encodes the phenolymature, this encoding
takes the form of a regulatory network. The expression lefrelach gene is functionally related
to the expression levels of some other genes. Thus, if theesgion level of one gene is changed,
expression levels of other genes are also modified accotditige regulatory connections. Quan-
tizing gene expression to only two levels, ON and OFF, wevarat the notion of a Boolean
network, introduced by Kauffmar2], 22, 23]. Formally, aBoolean network on n variablds
specified by a directed graph on the node{det.., n} where each nodehask; incoming edges
from other nodes and carriestate x € {+1} as well as ampdate function i {+1}" — {+1}.
The states of the nodes dynamically change in the followiag:vif at timet, the node states are
{xq(t), -, %(t)}, then at time + 1, for each i € [n],

Xi(t+1) = ui(Xiy (t), -, X, () (6.2.1)

whereiy,.. ., ik, are theK; nodes with outgoing edges that end.afhe states dt= 0 are specified

in advance. The set of states of all the nodes in the netwogkgaten timet is said to be the
configurationat timet. Since the configuration space is finite and the dynamicseohétwork are
deterministic, the network will eventually fall into a pieusly visited configuration, after which
the configuration dynamics becomes periodic. This cydhettory is called aattractor. The set

of attractors is believedl| 25, 12, 19, 18, 15] to correspond to the set of phenotypes expressible
by the genotype that is represented by the Boolean network.

In this section, we focus our attention on Boolean networkene all the attractors are cycles
of length 1, that is, fixed points in the configuration spacée Teasons for this restriction are
twofold. First of all, in many models for regulatory systeawually found in nature, such as the
model for cell determination during flower development gmadl in [L2], the attractors reached
are always fixed points instead of limit cycles. Secondlg, special case of networks with only
fixed points as attractors is easier to specify and analydeteally, and so, is a first step toward
an understanding of the more general case. For these reagensstrict our attention here to
Boolean networks specified by directed acyclic graphs. Efemth, we assume Boolean networks
to be acyclic without comment.

Mutations act on the genotype, or the Boolean network in cogieh Mutations could modify
the network in various ways, such as changing the adjacesiatians (as in§]), changing the
update functions (as ir3p]), and duplicating or deleting nodes (as &j)[ In this section, we
investigate the case when a mutation on the genotype ailyitnaodifies the update functions of
nodes.

Definition 6.2.1. Given a Boolean network N and a parametet (0,1), ane-mutationof N is a
random variable denoting a Boolean networkwith the same node set and adjacency relations
as N but for which, if pand v denote the update functions for node i in networks N ahd N
respectively, then for each node ji,=v u; with probabilityl — € and vy = —u; with probability €.

Certainly, mutation to update functions in a regulatorywwek is one of the most common
types of mutations in nature. Such mutations to the Booledwark can either be genetic or even

Throughout]n] £ {1,...,n}.
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be due to environmental effects. Imagine some physicalteviith probabilistically affects the
transmission of information from one node to the other inrtagvork. These random failures on
the edges can be equivalently modelled as failures of thategdnctions at the nodes. There-
fore, understanding the effect of update function mutatiom the expressed phenotypes is highly
relevant.

Note that in acyclic Boolean networks, the final configunatod the network is independent
of its initial state. For a string € {£1}", we say that a Boolean netwokk expresses i for all
i € [n], x is the state of nodein the final configuration. Now, we can formalize the notioatth
for an evolvable system, the phenotype needs to be viablehigih probability even when the
genotype undergoes random mutation.

Definition 6.2.2. For € € (0,1), a Boolean function f {£1}" — {+1} is said to bee-robustly
expressibléf there exists a Boolean network N with nodés. ..,n} whose states correspond to
the n arguments of f such that, ifx(xy,...,Xn) is the configuration expressed by ammutation
of N, then {x) = 1 with probability at leastl — 0,(1). f is said to berobustly expressibl# it is
g-robustly expressible for some constarg (0,1).

The primary goal of this work is to advance our understandingbustly expressible Boolean
functions. This is needed for evolvable, adaptable systeregist in the first place. Said differ-
ently, the space of possibilities for self-organized systenust be large enough and accessible
enough to adapt or evolve.

6.2.2 Necessary Conditions for Robust Expressibility

We define thee-biased product measugg on {£1}" by e (Xq,. .., %) = £" (1 — &)k where
k= |{i : % = 1}|. We may view a functiorf : {1}" — {£1} as the characteristic function of
a subset of £1}", that is, the subseftx € {+1}": f(x) = 1}. Then,u(f) denotes the weight
assigned by the measuug to the set characterized by

Our main observation is the following.

Lemma 6.2.1.f : {£1}" — {£1} is e-robustly expressible by a network of degree d if and only if
there existt, g, ¢1, . .., ¢, such that:

f(X1,- - %) = 9Xm1) - 910, Xm2) - P2(X(1))s - - > Xra(n) - (K1) Xm2) - - - Xmn-1))) ~ (6.2.2)

where:

(i) m: [n] — [n]is a permutation,
(i) fori e [n], ¢ : {+1}'"! — {+1} is a Boolean function depending on at most d inputs, and

(iii) g : {£1}" — {£1} such thatu.(g) > 1—o(1).
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Proof. To prove one direction, suppodeis e-robustly expressed by a Boolean netwdtkof
degreed. SinceN is acyclic, there exists a permutatien [n] — [n] such that there is an edge
between nodé and nodej in N only if m1(x) < m(y). For everyi € [n], let ¢; denote the
update function associated with nodg) in the network. Note that for any the functiong;
can only take as arguments at mdselements of the seftxyj }j<i. Now, in ane-mutation of
N, eachxq ¢i(---) is independently 1 with probability + € and —1 with probability . Let
g(S1,---,S) = f(Xa,...,%) where inductivelyX,i) = Sp(i) @i (X(1)s - - - Xni—1)) for eachi € [n].
One can explicitly verify now that Equatio®.@.2 holds for this choice of). By definition of
g-robust expressibilityg : {£1}" — {£1} is such thap(g) > 1—0(1).

The proof in the other direction is similar. Given the peratistnrtand the functiongs, . .., ¢y,
simply define a Boolean netwoi¥ wherert gives the ordering of the nodes and thé& specify
the update functions of the nodes. Then, the conditiog ensures that is robustly expressed by
the network. I

Theorem 6.2.2.1f f is robustly expressible by a Boolean network of consthegfree, it is corre-
lated with a function computable by a perceptron of constizgiree.

Corollary 6.2.3. Any function robustly expressible by a Boolean network astant degree can
be learned in polynomial time (and logarithmic sample caxjpy).

6.2.3 Sufficient Conditions for Robust Expressibility

Definition 6.2.4(Sequential Cover)A bipartite graph G= (V1,V, E) with [V4| = m and|V,| =n
is sequentially coverabli there exists a sequence of verticgs.v., v € V» for some k< n such
that the following two conditions hold:

(i) Every vertex \e V; is a neighbor of somg v
(i) Let Go = G. Fori € [K], inductively define Gas the induced graph oniG\ ({vi} U4 (%)).
Each vy is a vertex of degree exactlyin G;_1.

The sequenceyy.. ., is called asequential cover of siZefor G.

A bipartite graph is thus sequentially coverable if the icet of\, can be ordered in such a
way that at most one vertex ¥f is covered at a time. Note that < n necessarily if the graph is
sequentially coverable.

Theorem 6.2.5.1f a function f: {£1}" — {£1} has a sign-representatiosgn p(xy,...,%n)),
such that (x) is a degree-d polynomial with constant coefficients and sbahits term-variable
bipartite graph, G,, has a sequential cover of sig¢n), then f is robustly expressible by a Boolean
network of degree ¢ 1.
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Proof. Let f be a function of the variables = {x1,...,xa}. We construct a Boolean netwokk
that e-robustly expresse$ for some constant positive. Suppose that the term-variable graph
Gp is sequentially covered by the sequence of variakles. ., xj, € X, where each; is a distinct
element of[n]. Let X, ,,...,X, denote the rest of the variables (in some arbitrary ordeor F
j € [K], letTj denote the unique term covered by the variaple Observe that foj € [k], T can
only contain the variable$x;, },>; and always containg;. In the Boolean network, let the
update function for the node associated withbe ui; = sgn(Tj/x;;) for j € [k] and letu;; be an
arbitrary element of +1} for j € {k+1,...,n}. Itis clear thaiN is an acyclic Boolean network.

We now show thatf is e-robustly expressed b for somee € (0,1). Observe that with
probability at least - 2~ at most 2n mutations occur. There are a total @fn) terms in
p. The terms which correspond to mutated nodes are strictgtive, while those which are not
are strictly positive, because of our choice of update fonst Since all the coefficients gfare
constant, for a small enough constantat most 2n mutations will not be enough to make
evaluate to a negative real. Henbeexpresse$ with probability at least +- 2=, |

Corollary 6.2.6. There is a robustly expressible family of functiops{f£1}" — {+1} that cannot
be robustly expressed by a static assignment. In fact, fgrcamstante > 0 and for any static
assignment ofxy, ..., Xs}, the probability that the assignment expressed by-amutation of the
assignment satisfies, is at mos2— (M.

Proof. For eachn > 1, consider the functioffy, : {£1}" — {£1} wheref,(xy,...,Xn) = Sgn(Xy +
X1X2 4 Xq1XoX3 4+ -+ + Xq X+ - - Xq — 2). Noting that the term-variable graph pfx) £ X1 + X1 X0 +
X1XoX3 + -+ - + X1 X2 - - - X IS Sequentially covered by the sequemge .., X, it follows by a proba-
bilistic argument similar to the one in the proof of Theor&i®.5 that the functiorf,, is e-robustly

expressible for a small enough constant

On the other hand, we next show tHattannot be robustly expressed by any static assignment.
Fix a static assignment fdi,, and consider ag-mutation of it. Then, eaclk is an independent
random variable that acquiresl/1 with probability 1— ¢ and 3/ — 1 with probabilitye. For
ie{l,...,n}, lety; = x1x2---X. Now, p(x) = ¥;Vi, and thereforelE [p(x)]| = 3 |Evi| < 5;(1—
2¢)' < 152 a constant. We need to bound the concentration around tas niNote that thg's
are not independent; instead, they are generated by a Markoess. That is, Bf = a|yi—1 =

a;_1] can be specified by a 2-by-2 stochastic matrix, eiéelr; £ ¢ ) or ( e 1l-¢ ) .

1-¢ l1-¢ ¢
The eigenvalue gaps of these two matrices @rardd 21 — €) respectively. By a concentration
bound on the sum of elements generated by a Markov chain wj#nealue gapd, given in
Theorem 4.23 off1], we have that PYE[Y;yi] — ¥iVi| > n/8] < 2-%"_ So, with probability at
least 1- 272 5.y < n/4 andf, is not satisfied. lI

We will say that a sign-representationasyclicif the term-variable graph contains no cycle.
This allows us to present a more natural class of functioatsate robustly expressible.

Theorem 6.2.7.If a Boolean function f {+1}" — {+1} has an acyclic constant-degree sign-
representation with constant coefficients and no dedresrms, then f is robustly expressible by a
Boolean network of constant degree.
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Proof. We show thatf has a sign-representation whose term-variable graph hexgiastial cover
of sizeQ(n), thus proving our claim using Theore@n2.5 Let G be the term-variable bipartite
graph for the given sign-representation forSinceG is a forest by assumption, there must exist
some (at least 2) degree-1 vertices. Furthermore, bechase are no degree-1 monomials in
the sign-representation, all the degree-1 vertices reptesriables, not terms. We constrig;t

a sequential cover db, as follows. InitiallySis empty. Select some degree-1 verter G and
append it toS. Next, removev from G and also all the vertices adjacentwo Note that these
adjacent vertices must represent terms. The modified geaptillia forest and must have some
degree-1 vertices. Again, the degree-1 vertices mustsepteariables, not terms. Hence, we can
repeat the process, appending a degree-1 vert&xremove it and its adjacent vertices frai)
and so on. We stop when no vertices remain that represerg.term

It is clear thatSis a sequential cover. We only need to show tBé& of sizeQ(n). This is
SO0 because each time a vertex is added to the sequentia] ea/eemove the unique term the
associated variable is contained in, and this removal careroaly a constant number of other
vertices isolated (because each term is of constant degrejce, in order for all the variable
vertices to either be i§ or be isolated after the removal process, at |€4st) vertices need to be

ins.

We remark that given our other conditions, the “no degreerfnt condition cannot be re-
moved entirely. For instancef,(X) = sgn—x1 + X2 + (X1 + X2)(X3 + - + X»)) has an acyclic
sign-representation which contains degree-1 monomiatst Is not robustly expressible, because
with constant probabiliti; = 1 andx, = —1 which makesf (x) = —1 regardless of the values of
X3,...,Xn.

Corollary 6.2.8. There are at least®" functions on n variables that are robustly expressible.

Proof. Use Cayley. |

Corollary 6.2.9. There is a family of functions, f {1}" — {£1} such that it is robustly express-
ible by a constant degree Boolean network but does not haebuest static assignment.

Proof. For eachn, considerfy(Xg,...,Xn) = SgNX1Xz + X1X3 + - - - + X1X,). fn satisfies the con-
ditions of Theorem6.2.7 and hence is robustly expressible by a constant degree &volet-
work. On the other hand, for any static assignmeni;ould be assigned to the complement of
sgnxz2 + - - - + Xn) With constant probability, so that the assignment wouldsaoisfy f,. |

Algorithmic Complexity of Constructing Robust Boolean Netvorks

Theorem 6.2.10.Suppose f{+1}" — {£1} is known to be-robustly expressible. Then, if f has

a constant-size decision tree, a robust Boolean networkeegmg f can be constructed in poly-
nomial time with probabilityl — p0+y(n), using PAC queries and uniformly distributed examples.
Also, if f is chosen uniformly at random from the set of alldiions with logarithmic decision

tree depth, then a robust Boolean network expressing f caobstructed in polynomial time with

probability 1 — pol—31/(n)’ using PAC queries and uniformly distributed examples.
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Proof. Show how to find robust Boolean network from decision tregasgntation of function.
Use Ehrenfeucht-Haussler and Blum for first statementgadhsizes decision trees can be PAC
learned im/°9s time steps). Use Jackson-Servedio for second statendbnt.

Open Problems While this is a promising start toward characterizing theassary conditions
for self-organization, adaptability, and evolvabilityrther work is necessary particularly in gener-
alizing the conditions placed on the structure of Booleawaeks. The acyclic graph requirement
for the networks considered in this section is necessaryisare that there is a stationary fixed
point. While most evolvable systerds have stationary fixed points, they arrive at them in a more
general way than this drastic requirement. Future work khimgus on relaxing this retriction.
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Chapter 7

Discussion

7.1 Significance

We have demonstrated the usefulness of renormalizatiompgnethods for constructing reduced
models of complex systems that preserve emergent beharidrhave provided mathematical
constraints on the structure of complex systems that arestdb perturbations. Although we

have worked with idealized complex system models—cellaltaomata and Boolean networks—
our approaches are extensible to more general entity-braséels. In combination, our results
provide important guidance for more rigorous constructibentity-based models, which currently
are often devised in an ad-hoc manner. Our results can alparhdesigning complex systems

with the goal of predictable behavior, e.g., for cybersiguthis work has potential applications

to Sandia modeling and simulation efforts in the ERN, HS BX$&A SMUs, such as energy

infrastructure and financial networks. By providing a ckgaelation between model construction
and emergent behavior, we can more efficiently identify appate entity-based models for a
given domain.

One way of applying this work is through renormalization déreown detailed model that is
not feasible to simulate in full. The systematic approacheoibrmalization offers a controlled
study of the abstraction process that is involved in corsitrg almost all real-world models. A
reduced model not only allows greater opportunities foeesive simulation, but offers a more
intuitive picture in terms of higher-level entities. Ousudts for cellular automata indicate that as
the desired level of description of a system becomes cqarsepredictivity horizon increases.
Thus, if we are interested in the large-scale behavior obyistem, a coarse model can track this
behavior accurately, well past the time at which the smakbale predictions of a detailed model
may become inaccurate.

Another way of applying this work, in the absence of a knowtaitied model, is through
model construction based on known or desired emergent lwehév particular, many real-world
systems exhibit properties of self-organization, scalariiance, and robustness. Our results, along
with those in other literature, provide known families oéalized complex systems that manifest
such behaviors. Entity models obtained by renormalizatibtnese idealized systems are good
candidates for modeling real-world systems in such a walyttiear key emergent behaviors are
reproduced. Furthermore, engineering design of complsterys can benefit from attempting to
build actual entities that exhibit the same responses aethma model with desirable types of
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emergent behavior.

7.2 Future Directions

Several further technical investigations are suggestethisywork. A limitation of our current
renormalization process is that coarsening occurs in spaceot in time. Because a coarsened
model generally has slower evolution, it should be possibtnstruct a coarsened model whose
timestep corresponds to more than one timestep of the atignodel. This would ameliorate
the increasing cost of successive renormalizations, asisehe sandpile model. However, be-
cause time is one-dimensional whereas space is typicatly dwthree-dimensional, most of the
efficiency gain from a reduced model has already been oldtaimeugh spatial coarsening.

In a broader setting, the relation of the idealized modelfaee considered to more general
entity-based models would benefit from further study. We aigue that any entity-based model
that can be simulated in a digital computer is necessariyvatgnt to some Boolean network, but
the effect on tractability of viewing the model in this waynains to be determined. From the other
direction, it is important to extend the renormalizationBafolean networks so that the resulting
coarse model may be more general than a Boolean networkisiwaly, Boolean networks can be a
source of useful entity-based models for real-world agpions, and our results on the robustness
of Boolean networks can inform the selection of such eridged models.

Finally, an important property of some real-world systeh# ts not reflected in our idealized
models is dynamic adaptation of networks, i.e., conndgtitiat changes in time. This presents in-
teresting challenges to the renormalization concept.eftimergent behavior of dynamic adaptive
networks can be studied with systematic computational hadretical tools analogous to those
we have developed here, then much better guidance on th&woien of adaptive entity-based
models will be available. This will further advance the daipies of modeling and simulation for
addressing vital problems.
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