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Abstract

Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of
Sandia’s commitment to maintaining the integrity of the nuclear weapons stockpile. In
this report, we undertake a key element in that process: development of an analytical
framework for determining the reliability of the stockpile in a realistic environment of
time-variance, inherent uncertainty, and sparse available information. This framework
is probabilistic in nature and is founded on a novel combination of classical and com-
putational Bayesian analysis, Bayesian networks, and polynomial chaos expansions.
We note that, while the focus of the effort is stockpile-related, it is applicable to any
reasonably-structured hierarchical system, including systems with feedback.
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Bayesian Methods for Estimating
the Reliability in Complex

Hierarchical Networks
(Interim Report)

1 Introduction

Sandia has tremendous responsibilities in maintaining the integrity of the nuclear weapons
stockpile and, in carrying out this mission, manages a comprehensive testing program. A
major goal of this program is to determine the reliability of the stockpile and, at the same
time, to calculate the confidence in that reliability estimate. This is clearly a cost-intensive
activity; thus, the question arises as to whether or not the same levels of overall stockpile
integrity can be achieved at lower cost, or if higher levels can be achieved within the same
budget constraints.

Weapons systems are tremendously complex, multi-level affairs, and are often rife with
uncertainties that can originate in any number of ways. Calculating the reliability in such
settings can be extremely difficult; estimating the confidence in the reliability is often even
more difficult. In this paper, we set forth our program for investigating these issues.

In this document, we take “reliability” to be the probability that system failure does not
occur. In the context of our development, we define this precisely and discuss our strat-
egy for developing estimates of reliability in complex hierarchical systems comprised of
interconnected components that inherently possess uncertainty at every level of the system.
We also develop a rigorous means of computing the confidence in this estimate. Moreover,
due to, among other things, data gathering limitations, our mathematical descriptions of the
underlying uncertainties are often incomplete. This lack of information is itself a source
of uncertainty in reliability estimates. Thus, properly accounting for this uncertainty is of
paramount importance, particularly in systems where it is impractical, or impossible, to
perform a sufficient number of classical tests to ensure a specified confidence level.

In the sections below, we describe the development of a novel mathematical strategy, em-
ploying structured probabilistic models, for describing systems-related tests. Our goal will
be to develop a rigorous means to assess the overall reliability of the systems, the associ-
ated confidence we have in this reliability, and the impact additional data acquired from
subsystem and component-level tests can have. This last ability will allow us to formulate
optimization problems that will determine the “best” place in the system to test to give the
maximum increase in our confidence in the reliability estimate.

The basis of our strategy will be a Bayesian approach, with which we seek to update the
probability distribution for the output of any component given new test data on the perfor-

5



mance of the system. This approach is inspired by the work of Martz and Waller [10, 9],
who used a Bayesian approach to update reliability estimates based only on pass-fail data
and only for special structures of the system. We extend this approach to more general
Bayesian networks in which certain components may exist in, or directly affect, multi-
ple levels of the systems. The strategy will first be applied to time-independent systems
with continuous-valued data, but will be naturally extensible to time-dependent systems
with continuous data. “Continuous data” refers to real-valued performance variables, e.g.,
voltage, that must fall between given bounds for the system to be considered working ac-
ceptably. A final foundational element of our strategy is the use of polynomial chaos ex-
pansions (PCE), with which we will represent the random variables and processes that
characterize the system at all of the levels. This facilitates several important tasks: uncer-
tainty propagation through the system; analysis of so-called uncertainties present due to
lack of information; and generalizations to the time-dependent case.

Exact or approximate inference algorithms will allow probabilistic information character-
izing reliability to be updated through and across systems. This is crucial for estimating
the uncertainty in the overall system reliability, and for infusing appropriate updates when
additional information and data are acquired.

This work is related to and inspired by our current work on the Integrated Stockpile Eval-
uation (ISE) project, but is more generally applicable to any hierarchical system. In fact,
it should be applicable to any reasonably structured system, including, e.g., systems that
have feedback.

This report is organized as follows: For the sake of completeness, we provide in section
2 some technical background on several topics. First, we describe the Bayesian networks
that we will consider and why they are appropriate to this study. Next, we review Bayes’
theorem in the form that we exploit . We then describe function analytic approaches to
probability and the fundamentals of polynomial chaos expansions (PCE) that are essential
to our approach. In this context, we consider the “stochastic dimension” and methods
for preventing an explosion of this dimension. In section 3, we develop the basic model
that we will use and consider some of its properties. We also formally define reliability
in this setting. We then consider a very simple hierarchical system with linear functional
relationships among the components. This allows us to work out in detail the effects of
obtaining test data at various levels in the system. Some counter-intuitive results emerge
from this exercise that have helped us to understand this effort better. In section 4, we
develop a synthetic generator that will be used to produce hierarchical test systems with
specified properties. These, in turn, will be used to test our final strategy over a variety of
systems. In section 5 we conclude with a discussion of the next steps in our research.
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2 Background

In this section we provide some background on some of the fundamental concepts that will
be needed in our discussion.

2.1 Bayesian Networks

The systems that we are considering are assumed to possess uncertainty, either inherent or
due to lack of information, and this is a fundamental characteristic that we considered in es-
tablishing an appropriate mathematical context. Here, we describe this and other important
system considerations:

1. They are engineered hierarchical systems; any component may be comprised of sub-
components, which, in turn, may themselves contain subcomponents. Also, several
instances of a single type of component1 may appear in a given system. For exam-
ple, a hydraulic system may contain five valves, three of which have identical model
numbers and specifications. It is also possible that a particular instance of a com-
ponent will play a role in more than one subsystem. A simple example of this is an
automobile battery, which has functions both in the starting circuitry, and in, say, the
instrument panel.

2. We identify thei-th component in the system with a variableXi . This variable may
represent voltage, impedance, yield stress, or any other quantity of interest. Because
of measurement error, limited opportunities for testing, component-to-component
variability, aging, and environmental influences, our knowledge of the exact value of
Xi will be imprecise. Thus, we adopt a probabilistic approach and treatXi as a random
variable. Information onXi will be expressed in this probabilistic framework, say
using probability distributions, or functional representations. Furthermore, we will
have the ability to update these probabilistic descriptions using Bayesian inference
as more data become available.

3. Bayesian networks will be employed to aggregate information into a system-level
probabilistic model, and to encode conditional independence relationships among
various components as imposed by the system structure.

Regarding the last item above, consider thejoint probability distribution of the random
variables{Xi : i ∈ V }, whereV is the set of component indices. This distribution is high-
dimensional and complex, describing the performance of every component of the system
and dependencies among the performance values. We would like to estimate and update
this distribution based on test data. We would also like to focus our attention on the perfor-
mance of particular components and subsystems—in other words, to examine the marginal

1These will be referred to as “instances” of a “class;” see §3.
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distribution of a particular subset{Xi : i ∈ U ⊂ V }. And we would like to calculate con-
ditional probabilities—i.e., the probability of one subset of the variables given the values
of another subset of the variables. These tasks will become computationally intractable
unless we take advantage of the structure of the system. In particular, we propose using the
engineered structure of the system to factor the joint probability distribution into a number
of conditional probabilities.

The above serves as motivation for using probabilistic graphical modeling capabilities
present inBayesian networks. We provide a brief description of this concept here; for
more details see, for example, Jensen [5] or Jordan [6]. Our notation here follows that of
Jordan [6]. Let G (V ,E) be a directed acylic graph (DAG) with nodesV and edgesE . Let
XV ≡ {Xi : i ∈ V } be a collection of random variables indexed by the nodes of the graph.
Each nodev∈V is associated with a set of “parent” nodes, i.e., all the nodes from which a
directed edge points towardsv. This set of parents is denoted byπv and may be the empty
set. Using any set of indices as a subscript, we letXπv denote the set of random variables
associated with the parents ofv. In a Bayesian network, the joint probability distribution of
XV factors as follows:

p(xV ) = ∏
v∈V

p(xv|xπv)

wherep(·) is a probability density function in the case of real-valuedX and a probability
mass function in the case of discrete-valuedX.

In the present application, the structure of the graphG will reflect the structure of the
engineered system. But this correspondence need not be exact; the Bayesian network based
on G may include different types of nodes representing the class and specific instances of
a particular component, and may also include nodes representing environmental conditions
or other external factors that are relevant to system performance.

2.2 Bayes’ Theorem

The ability to update our estimate of the reliability of a system based on newly acquired data
is critical. And, since we will be using Bayesian updating to effect this, Bayes’ Theorem
is fundamental to our work. We now provide a brief summary of this important result. By
definition, the conditional probability of eventA given eventB is given by

P(A | B) =
P(A∩B)

P(B)
.

Similarly, the conditional probability of eventB given eventA is given by

P(B | A) =
P(A∩B)

P(A)
.

Thus, by combining these two equations and rearranging terms, we obtain Bayes’ Theorem:

P(A | B) =
P(B | A)P(A)

P(B)
.
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In this setting, the terms have standard names.

• P(A) is called theprior probability. It is our state of knowledge prior to observing
eventB.

• P(B | A) is the probability ofB givenA. This is often called thelikelihoodof A.

• P(A | B) is called theposteriorprobability of A given B. That is, it is the updated
probability ofA given the new eventB. If subsequent data is collected, this becomes
the prior in the next round.

• The termP(B) is called themarginal probabilityof B and acts as a normalizing
constant.

Although we have derived Bayes’ Theorem in terms of probabilities, the same result holds
for probability densities. In particular, for a probability density, sayf (x), x ∈ X, we can
write, given datay∈Y

f (x | y) =
f (y | x) f (x)

f (y)
.

Again, the terms have standard names:

• f (x) is called theprior distribution of X. It is our state of knowledge about the
random variableX prior to observingY = y.

• f (y | x) is the likelihood function ofx givenY = y.

• f (x | y) is called theposteriordistribution ofX given y. That is, it is the updated
probability density ofX given the dataY = y. If subsequent independent data is
collected, this distribution becomes the prior in the next round.

• The termf (y) is themarginal distributionof y, also called theevidence, and acts as
a normalizing constant.

The notational abuse of usingf in all of these is conventional; each one is, in fact, different
as is distinguished by its arguments.

Our approach is to use Bayes’ Theorem to update distributions; thus we will use the latter
form in our development. Finally, we note that it is easy to extend Bayes’ Theorem to two
or more variables. Specifically, in the context of the hierarchical system structure that we
assume, we obtain the following useful result

f (x | y,z) ∝ f (y | x) f (z | x) f (x),

where we have ignored the normalizing constant. This is true if the datay andz are condi-
tionally independent givenX.

9



2.3 Functional Analytic Approach to Probability

In the field of probability, there are two primary means of analysis. The first of these is
the traditional probabilistic approach, in which one is concerned with properties of certain
probabilistic entities, such as cumulative distribution functions, probability density func-
tions, or a statistical moment, and their behavior under transformation or limit operations.

There is, however, an alternative approach, which we will refer to as a function analytic
approach to probability. The basis of this approach is the recognition that random variables
(RVs) and random fields (RFs) are functions with at least a subset of the domain of these
functions being a sample space,Ω, of elementary events that is well-defined in the context
of a probability space consisting of the triple,(Ω,S ,P). In addition to the sample space, the
probability space consists of aσ-algebraS of subsets ofΩ called events, and a probability
measureP. Each of these entities has well-established and precise mathematical properties.

Using this structure, it is easy to observe that a random function is, in fact, not random
at all, and that whatever randomness that exists in the framework is entirely associated
with the occurrence of events. Thus, it seems reasonable to cast these random functions
in a function analytic setting. Within this setting there are many analysis possibilities:
algebraic, semi-group, topological, etc. Our goal is to develop approximations to exact
functions in a Hilbert space setting.

We emphasize that under identical assumptions, probabilistic solutions that result from ei-
ther analytical path are identical. They offer competing means to package information;
the approach taken should be dictated by the particulars associated with a given applica-
tion class. In our case, the primary goal is first to generalize deterministic problems to
accommodate input parameters that are modeled as RVs with approximate probabilistic in-
formation. The function analytic approach is particularly well-suited to this. Based on ex-
perience, we expect no impediments to generalizing our implementation to time-dependent
problems using RFs.

2.3.1 Scalar Polynomial Chaos Expansions

The polynomial chaos expansion (PCE) method was first conceived by N. Wiener as a
means to integrate operators possessing differential Brownian motion, at the time viewed
as chaotic, as an external forcing influence. While the random process he described is
quite general, we will take a simpler route while noting that the transition to the more gen-
eral case, first progressing to vectors containing RVs as components, then to more general
random processes, is possible [13].

Consider two real-valued scalar RVsX andY, defined on(Ω,S ,P), each with finite vari-
ance. Assume that there exists a functional transformation,T, betweenX andY; that is,
thatX = T(Y) is well-defined.
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SinceX has finite variance by assumption, it is a member of the class of square-integrable
functions on its domain, the sample space; thusX ∈ L2(Ω). It is also known that members
of L2 constitute a Hilbert space [12] of functions. Specifically,L2 is a space of functions
that is a complete, normed, inner product space. As one might expect, there are a number
of mathematical properties that this membership entails. Most important to our purposes is
that we know that it is possible to construct a generalized Fourier expansion [8] to approx-
imateT, and that this can be done to arbitrary accuracy.

For the case of PCEs, and for reasons discussed later in this report, we choose to construct
this generalized Fourier expansion in terms of a set of orthogonal polynomials in a stan-
dard normal random variable,Y = ξ, that we will denote as{Γi(ξ)}. The mathematical
construction we have described above ensures that we can construct approximations,T(n),
such that for some norm‖ ·‖, the difference‖T−T(n)‖ can be made arbitrarily small when
taking a large enoughn. In other words,

lim
n→∞

‖T−T(n)‖= 0.

The {Γi} are referred to as Hermite polynomials, and their properties can be found in
any of a number of references documenting orthogonal polynomials such as [1]. In one
dimension, these polynomials are specified by the following formula,

Γi(ξ) =
[i/2]

∑
j=0

(−1) j i!
(i−2 j)! j!2 j ξi−2 j (2.1)

where the expression[r] evaluates to the largest integer less than or equal tor and 0!= 1.
The first four of these are

Γ0(ξ) = 1

Γ1(ξ) = ξ (2.2)

Γ2(ξ) = ξ2−1

Γ3(ξ) = ξ3−3ξ.

Many orthogonal polynomials derive from particular ordinary differential equations de-
fined on Hilbert spaces [14] known as Sturm-Liouville systems. These systems induce an
associated inner product weighting function that defines their orthogonality properties. For
the Hermite polynomials this weighting function is, to within a constant, readily recognized
to be the probability density function of a standard normal RV, which explains our choice
above. With these specifics in hand, we can now exploit the orthogonality and properties
of the inner product to build our PCE-based approximations:

X(n) = T(n)(ξ) =
n

∑
i=0

giΓi(ξ), (2.3)
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where the generalized Fourier coefficients,gi , are given by

gi =
E [XΓi(ξ)]
E

[
Γ2

i (ξ)
] , (2.4)

whereE [ · ] is the operator of mathematical expectation.

Note that for the discrete case it is possible to generalize Eqs2.1and2.3 to higher dimen-
sions inξ, sayξ = (ξ1, . . . ,ξm), wherem is referred to as the stochastic dimension. We
caution, though, that the process is rather complicated; we refer the reader to [3] for the
details. The passage to the infinite-dimensional case, under suitable constraints, is a RF
and is the subject of [13].

We also note that there are a number of other known probability density functions that also
can be identified, simply by inspection, as weighting functions for inner products from
different Sturm-Liouville systems. For example, an exponentially-distributed RV defined
on the interval[0,∞), can be seen to be affiliated with the Laguerre polynomials. Note
that none of the underlying theory, nor the operations necessary for constructing a gen-
eralized Fourier expansion rely on a particular RV/orthogonal polynomial pairing. Thus,
theoretically, it is possible that PCEs can be generalized to any appropriate pairing. These
generalizations, often termed Askey Expansions in the literature, are the subject of active
research.

2.3.2 Additional Features of the Approach

Taking this function analytic approach, and using PCEs in particular in doing so, has some
other beneficial features that we will be exploiting:

• With eachn, the expansionT(n) has a probability distribution that is implicitly de-
fined. Samples from this distribution, or realizations, are almost trivial to generate
since they are known functional transformations of a standard normal RV.

• For the case of random vectors, the PCE representation carries statistical dependence,
including, naturally, correlation, via the now vector valued,gi .

• Since it is possible to generate large number of transformations,T(n), and to test
against experimentally-derived statistical constraints, it is possible to use them as a
tool for addressing epistemic uncertainty.

• The time-dependent problem can be accommodated through a ready extension to
approximate random processes.

• Optimization Under Uncertainty (OUU) may be rigorously addressed in a function
analytic framework; this will entail augmenting the associated norms by a sample
space domain.
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2.4 Variables

We will represent the performance values as random variables using (truncated) polynomial
expansions. More specifically, there will be at least one independent “stochastic dimen-
sion” attached to each child node, in the sense that each child node will be represented by
the means of a truncated WHe expansion of at least one Gaussian random variableξi , and
that theξi ’s will be mutually independent. Order and coefficients of these WHe expansions
will be determined using a set of relevant methods (such as projection of an experimental
distribution, or moment-based expert knowledge). Therefore, an important question that
immediately arises regards the “stochastic dimensionality,” i.e., the number of independent
Gaussians to be used in the truncated WHe expansions. In general, practical applications
of WHe expansions to uncertainty propagation assign one stochastic dimension, i.e., one
independent Gaussian per uncertain parameter in the system. Although this may not be
sufficient in general, we will not even be able to maintain a separate stochastic dimension
for each node inV , and will need to periodically project the truncated WHe expansions
onto bases of smaller stochastic dimension as the inference process advances through the
network from parents to children. One approach to perform such projections is based upon
the following theorem, due to Paul Lévy:

Theorem 2.1.Let F : IR→ [0,1] be right-continuous, increasing (not necessarily strictly),
such thatlimx→−∞ = 0 and limx→+∞ = 1. Let F−1 be itsgeneralized inverse:

(∀ω ∈]0,1[) F−1(ω) = inf
x∈IR

{x : F(x)≥ ω}.

If U be a uniform random variable over[0,1], then F−1(U) is a random variable whose
CDF is F.

More specifically, Theorem2.1allows us to make products of the form< XΨi > meaning-
ful (when X is an absolutely continuous random variable), which they are not by default
since the random variablesX andΨi have no reason to be defined over the same probabil-
ity space. Inverse mapping them to the same random variable (uniform, in the context of
Theorem2.1) ensures that the following product is well defined:

< XΨi >=
Z

Ω
F−1

X (U)F−1
Ψi

(U)dP,

whereU is a uniform random variable over a probability space(Ω,S,P), andFX andFΨi

are the respective CDFs ofX andΨi . For instance, consider the case ofΨ0 = 1, for which
a straightforward calculation yieldsF−1

Ψ0
(U) = 1. Therefore, thanks to Theorem2.1, one

has
< XΨ0 >=

Z
Ω

F−1
X (U)dP = E

[
F−1

X (U)
]

= E [X] ,

sinceF−1
X (U) is a random variable with the same CDF asX. This result confirms that the

projection strategy retrieves, at 0-th order, the expectation. At first order, ifX = ξ, then one
has

< XΨ1 >=
Z

Ω
F−1

ξ (U)2dP = E

[
F−1

ξ (U)2
]

= E
[
ξ2] = 1,
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which shows that in that case, at first order, the approximation is exact and is indeed ob-
tained using the projection method. However, in general, the< XΨi > integrals cannot be
analytically calculated even whenFX is known, and the matter is further complicated when
only a sample of realizations ofX is provided; therefore, one has to resort to numerical
quadrature to evaluate these integrals.
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3 The Model

3.1 Classversusinstance

In the context of our model, we will distinguish betweenclassnetworks (that are applicable
to classes of devices) andinstancenetworks (that are applicable to particular instances in
a class of devices). This is motivated by the fact that, whereas the knowledge that can be
gleaned as to a collection of devices is directly applicable to each individual device that
pertains to that class, the converse is not true. In other words, there is directinheritance
from the class to the instance, while in the opposite direction, there can merely be an update
of the class properties based on an individual device’s properties.

Note that how such an update must be performed in practice is not obvious: for example,
if the class properties are determined from the statistics of samples of a particular device,
then the information obtained by inspection of a new instance of this class of devices must
be appropriately weighted in order to reflect its size (1, in this case) with respect to the size
of the initial sample. However, this method cannot be used if the class properties have been
inferred using a non-sampling technique, or if sampling has been used but the sampling
parameters are no longer available. A simple example to make this discussion less abstract
is the following: assume that it is known that the predicted height (in cm) in a given age
group ish = 120, with a standard deviation ofσh = 5, based on a sample ofn = 100
children. Consequently, if an other child (instance) in this age group (class) is examined
and found to have a height ofh∗ = 130, then the class properties can be straightforwardly
updated as follows:

h′ =
n

n+1
h+

1
n+1

h∗

=
100
101

120+
1

101
130

= 120.1,

and

σ′h =

√
n

n+1
(σ2

h +h
2)+

1
n+1

h∗2−h′2

=

√
100
101

(52 +1202)+
1

101
1302−120.12

≈ 5.05.

On the other hand, say that we are provided instead with the class property that in this age
group, height in cm is distributed according to a normal distribution with mean 120 and
standard deviation 5. Although this is a much more informative characterization (with, in
particular, the same information at first and second orders), it becomes now unclear how the
observation of an additional instance withh∗ = 130 can be fed back to the class property.

15



To overcome this issue, several strategies can be considered; one simply consists of sam-
pling a non-frequentist property. For instance, the normal distribution can be arbitrarily
sampled, then the new instance added to the sample, and finally, an updated distribution
fitted to the resulting sample. This approach is easy to implement, but it suffers shortcom-
ings: in particular, the size of the sample to be used is entirely arbitrary, and will influence
the final result. Also, the fitting process requires that a model is used for the distribution.
One can, for instance, use a truncated PCE, but again, this choice will influence the final
result.

A more principled—and indeed Bayesian—approach consists of formulating theparam-
etersof the class property distribution in probabilistic terms. In the previous example,
these parameters are the mean and variance of the normally-distributed height; a Bayesian
approach would describe the mean and variance with probability distributions of their
own. The widths of these distributions affect how strongly the class property distribu-
tion p(h|µh,σ2

h) is influenced by new data. Beginning with rather uninformative priors for
µh andσh, Bayes’ rule describes how to condition on successive property instances; the
distributions ofµ andσ will typically narrow as more data become available.

3.2 Reliability

We propose to definereliability as the probability that a random variable has a value within
a prescribed range. Formally, this means that the reliability ofX with given acceptable
boundsxmin andxmax is:

RX(xmin,xmax) = P(xmin < X < xmax)

For example, if the range of acceptable values is[−2,2], the reliability of a standard normal
random variable isca. 95%.

3.3 First Problem

In this section we consider a simple system and a formal statement of the question(s) that
we want to be able to answer.

Our simple system is illustrated in figure3.3and consists of a system,C, with two subsys-
tems,A andB. The assumptions we make are as follows:

1. Assume that bothA andB have one output value that is transmitted toC. Let a be the
output ofA andb be the output ofB.

2. Assume thatC provides a known functional form for combining these parent values.
As a first case, assume that this form is linear with additive error, i.e.,C has outputc
given by

c = αa+βb+η
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Figure 1. Simple system consisting of one system,C, that has
two subsystems,A andB (A andB are considered the “parents” of
C).

whereα andβ are given, i.e., we know what the designer had in mind, andη is an
additive error. Assume thatη has a known distribution, say normal.

3. Assume that the distributions ona andb correspond to PC expansions of the form

a =
Na

∑
i=0

aiHi(ξ)

b =
Nb

∑
i=0

biHi(ξ).

4. Assume that we have prior distributions for the coefficientsai andbi ; these distri-
butions will be updated as we gather data. This is justified by the Bayesian notion
that the coefficients are determined by data, and that our state of knowledge about
the coefficients’ values can be represented by (conditional) probability distributions.
Distributions onai andbi will give rise to families of distributions fora andb. The
priors we choose forai andbi may reflect the intended operating conditions or nom-
inal outputs of componentsA andB.

5. Assume that we are given limits of acceptability for each node in the system, i.e.,
upper and lower bounds of acceptability of the output.

Now we assume that we have collected a new piece of data. This data may come in various
forms, depending on where the tests were conducted. Let ˆa, b̂, andĉ denote data collected
at A, B, andC, respectively. We must consider all possibilities of a new piece of data. For
example, we could perform a complete test of the system and obtain the triple

d̂ = (â, b̂, ĉ)
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or we could do only a test at one of the nodes to obtain, e.g.,

d̂ = (ĉ),

or tests at two of the nodes to obtain, e.g.,

d̂ = (â, ĉ),

or any other combination.

Given our definition of reliability as stated in section3.2, we can pose the following ques-
tions:

1. How do we update the probability distribution at each node? Even if we do not per-
form a test directly on one of the nodes, we may still be able to update the distribution
on that node.

2. What is our estimate of the reliability of the system? As stated in section3.2, this is
just the integral between the limits provided.

3. What is our confidence in this estimate? That is, since we have distributional in-
formation on the coefficients, this should give us enough information to be able to
get a distribution of the reliability estimates. For example, we could simply sam-
ple the distributions at the parent levels and use these to create a distribution for the
reliability estimates.

4. Since we want to be able to control the growth of the stochastic dimension as we
proceed through the system, how can we reduce the implied dimension at the child
level? That is, even if there is only one stochastic dimension at each of the, sayP,
parent systems (two in our simple example), there would be at leastP+ 1 stochas-
tic dimensions at the child node (C in our example). We can think of a couple of
possibilities: First, one can simply truncate the PCE. If we know, for example, that
one of the parent nodes is extremely stable (its variance is very small), then it may
make sense to drop the stochastic term corresponding to this node. Second, if the
desired dimension at the child level is one, the theorem2.1 can be used. Third, we
may be able to impose constraints on the projection to create a projection onto more
than one stochastic dimension or to create different objective functions for doing the
projection.

3.4 Basic Methodology

Here we assume that we have the system as described in figure3.3and recall that the node
η is never directly testable, but, as we show below, is just a device to allow us to deal with
the error inC in a consistent manner.

Here are the steps to deal with this system:
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1. Initialize: At parent nodeA, supply a prior pdf for theai . For example, if

a = a0 +a1Ψ1(ξa)+a2Ψ2(ξa)+ . . .

where we can take ¯a0 to be the designed (or target) value ofa, ā1 to be the variance
of a based on engineering judgment or experience, and ¯ai to be zero for alli > 1. Of
course, we have to specify actual prior distributions for theai , satisfying these simple
constraints. These could be broad uniform distributions, or normal distributions, all
independent of each other.

2. Initialize B in the same way.

3. Initialize η by assuming it is normal and provide initial distributions for the mean
and variance. Call the valuesηi . This is just a first order PCE; it could also be a
higher order expansion, if desired. (Then we would have to initialize it as we did for
A andB.)

4. We want to updatep(ai ,bi ,ηi) when we are given some data that we collect at the
nodes. At the beginning, this probability density factors as follows, since the specifi-
cations above are independent:

p0(ai ,bi ,ηi) = p0(ai)p0(bi)p0(ηi).

We are also using shorthand for the successive indices; i.e.,ai really meansa1 . . .an

if there aren coefficients in the PC expansion ofa.

5. Assume we collect data, say ˆa. Then, applying Bayes rule,

p1(ai ,bi ,ηi | â) ∝ p(â | ai)p0(ai)p0(bi)p0(ηi),

sinceâ is independent ofbi andηi .

6. Assume we next collect data, sayb̂. Then

p2(ai ,bi ,ηi | â, b̂) ∝ p(b̂ | ai ,bi ,ηi ; â)p1(ai ,bi ,ηi),

wherep(b̂ | ai ,bi ,ηi ; â) is the likelihood function of the coefficientsai ,bi ,ηi with the
new data,b̂. Sinceb̂ is independent of ˆa, and isalso independent ofai andηi , it
follows that

p2(ai ,bi ,ηi | â, b̂) ∝ p(b̂ | bi)p1(ai ,bi ,ηi).

7. Assume we next collect data, say ˆc at the child node. Then

p3(ai ,bi ,ηi | â, b̂, ĉ) ∝ p(ĉ | ai ,bi ,ηi ; â, b̂)p2(ai ,bi ,ηi).

8. Expanding this last expression, we obtain

p3(ai ,bi ,ηi | â, b̂, ĉ) ∝ p(ĉ | ai ,bi ,ηi)p2(ai ,bi ,ηi)
∝ p(ĉ | ai ,bi ,ηi)p(b̂ | bi)p(â | ai)p0(ai)p0(bi)p0(ηi)
∝ p(ĉ | ai ,bi ,ηi)p0(ηi)

×p(b̂ | bi)p0(bi)
×p(â | ai)p0(ai).
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9. We can easily see that the addition of one new piece of data simply adds an appro-
priate factor to one of the lines above. For example, suppose we get ˆa2. Then we
have

p4(ai ,bi ,ηi | â, b̂, ĉ, â2) ∝ p(ĉ | ai ,bi ,ηi)p0(ηi)
×p(b̂ | bi)p0(bi)
×p(â2 | ai)p(â | ai)p0(ai).

It follows from this formula that the order of collecting the data does not matter, i.e.,
each new observation puts a multiplicative factor in the above formula.

10. Next consider the collection of two pieces of data at the same time. For example,
suppose we collect{â+, ĉ+}. (Note: we use the bracket notation to indicate that we
have collected the new data at the same time.) This presents a new situation. Recall
that

c = αa+βb+η.

Thus, we can think of this as having new data fora and for the combinationβb+η.
Now,

p(ai ,bi ,ηi | {â+, ĉ+}) ∝ p({â+, ĉ+} | ai ,bi ,ηi)p(ai ,bi ,ηi)

∝ p({â+, β̂b+η})p(ai ,bi ,ηi)

∝ p(â+ | ai)p(β̂b+η | bi ,ηi)p(ai ,bi ,ηi).

Here we see that, although the joint probability function does not factor, the data
does. Clearly the same will hold for new data of the form{b̂+, ĉ+} and will add a
factor of the formp(α̂a+η | ai ,ηi) to the above. Similarly, new data of the form
{â+, b̂+, ĉ+} will add a factor of the formp(η̂ | ai ,bi ,ηi).

Some comments are in order:

1. The joint probabilityp(ai ,bi ,ηi) will continue to factor intop(ai)p(bi)p(ηi) until
data is collected atC. At that point, the data atC induces a dependence between the
ai and thebi .

2. The joint posterior distribution ofai ,bi ,ηi at each step can be explored by Markov
chain Monte Carlo (MCMC). MCMC encompasses a broad class of methods that
simulate drawing samples from complex probability distributions [4]. In particular,
Metropolis-Hastings algorithms provide for the construction of a Markov chain with
stationary distribution equal to our posterior, using only evaluations of the density
pi(ai ,bi ,ηi |·) up to a multiplicative constant. From this chain of samples, it is easy to
compute means, variances, and marginal distributions for any of the PC coefficients.
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3. Evaluation of the joint posterior densitypi(ai ,bi ,ηi |·) at any stage of the inference
process detailed above will entail evaluating likelihood functions such asp(â | ai)
or p(β̂b+η | bi ,ηi). Using a Metropolis-Hastings algorithm requires that we be
able to evaluate these functions at arbitraryai ,bi ,ηi , with arbitrary data. The most
robust method for evaluating the likelihood may be via sampling [2]. To illustrate this
procedure, consider the likelihood functionL(ai)≡ p(â | ai). Given values for the PC
coefficientsai (e.g., drawn from the proposal distribution at each MCMC iteration),
we can sample the random variableξa underlying the PC expansion ofa. Evaluate

a(s) = ∑i aiΨi(ξ
(s)
a ) at each sampleξ(s)

a . A histogram of the resulting samples{a(s)},
properly normalized, will provide an estimate of the densityp(a | ai). Then we
evaluate this density at each ˆa to obtain the likelihood.

Strictly speaking, evaluating the density ofa at an arbitrary argument, using a set of
samples{a(s)}, involves some form of kernel density estimation:

p(a) =
1
n

n

∑
s=1

K
(

a|a(s)
)

whereK
(

a|a(s)
)

is a density concentrated arounda(s) [4]. Here, we would typically

use a one-dimensional Gaussian kernel,K = N(a(s),σ2
s) with bandwidthσs selected

by the user or via various optimality considerations.

An alternative to sampling and kernel density estimation may be to evaluate analyti-
cal expressions for the probability density of a (functional) transformation of a ran-
dom variable, given the density of the latter [11]. For example, if the likelihood de-
pends on a one-dimensional PC expansion, we have the transformationa= f (ξa;ai),
where f represents the PC expansion ofa. Then the probability density ofa is given
by

p(a) = ∑
ξ∗∈Ξa

pξ(ξ∗)
| f ′(ξ∗)|

wherepξ is the known probability density ofξa andΞa is the set of roots ofa− f (ξ).

Next we have to calculate the reliability estimate and the confidence in that estimate. As-
sume that we want to do this atA and that we have upper and lower bounds for the accept-
able performance, saya anda, respectively.

Then we proceed as follows:

1. ComputeN samples of the reliability by the following procedure:

(a) Setk = 1.

(b) Obtain one joint sample of theai ; this is one possible set of PC coefficients for
a. Using this set of PC coefficients, we must obtain the probability density of
a. This can be done in two ways: (1) sample the underlyingξa and, with the
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help of kernel density estimation, build an approximation top(a|ai); (2) use
an analytical formula that requires finding the (real) roots of the polynomial
a−∑aiΨi(ξa) and the derivatives at those roots [11]. Either of these proce-
dures will be used to evaluate each likelihood function during MCMC (see the
discussion at comment #2 above).

(c) Compute

rk =
Z a

a
p(a | ai)da

(d) Setk = k+1; repeat as necessary.

2. Compute whatever statistics are desired about this set{rk}, e.g., the mean and vari-
ance, quantiles, etc.

Clearly, the computations atB andC will be the same. And note that samples of the PC
coefficientsai , bi , etc, used in step 1 above will be generated by the MCMC algorithm.
Thus many of the calculations can be reused.
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4 Specification of a Synthetic System Generator

The purpose of this section is to develop a means of describing a complex hierarchical
system in a compact form and then using this form to generate automatically a collection
(or sample) of a specified number of instances of this system. This sample can then be used
to test our methods for estimating the reliability. Since we have the “true” system and we
can control the reliability of it, we will have a way of comparing our results to the “truth.”

The idea is that a “system” in our context consists of a collection of subsystems, each of
which is itself a system. In addition, a system also contains a set of tests that can be run
on this system. We can thus use this strategy to create arbitrarily complex (hierarchical)
systems. The subsystems can be either specifically named systems or can be chosen from a
specified set of functionally equivalent systems. For example, an engine component could
be specified as an instance of an E123 engine, or chosen randomly from E121, E122, or
E123.

Describing the tests is a key part of this model. Testing first requires a statement of the
functional dependence on the subsystems and some specification of the errors that can be
present. The errors could include both the random errors and the systematic errors. When
a “realization” of this system is generated, the tests section will contain the actual values of
the tests. When we have to take into account time-dependence, we will also have to have
some way to include this information.

4.1 Generic Description of an Individual System

We first specify a way to designate a system. We have in mind using XML as the language.
Here is the first example of a system description. It describes our simple “A-B-C” system
where A is the top level system with subsystems B and C.

<SystemSet>
<System name = "A" >

<SubSystemSet>
<System name = "B" numberToGenerate = "1"/>
<System name = "C" numberToGenerate = "1"/>

</SubSystemSet>

<TestSet>
<Test name="test1" functForm = "linear" available_at_parent="no"
isOutput = "yes">
<coeff sub = "B" testName = "test1" outputNum="0" value = "1.0"/>
<coeff sub = "C" testName = "test1" outputNum="0" value = "2.0"/>
<coeff sub = "constant_term" value = "5.0"/>
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<error
random_error_dist = "normal"
random_error_mean = "0.0"
random_error_var = ".04"
systematic_error = ".005"

/>

<bounds target = "7.0" upper = "7.5" lower = "6.8"/>

</Test>
</TestSet>

</System>

<System name = "B" >

<SubSystemSet>
<System name = "input" value = "3.14"

numberToGenerate = "1">
<error

random_error_dist = "normal"
random_error_mean = "0.0"
random_error_var = ".02"
systematic_error = ".003"

/>
</System>

</SubSystemSet>

<TestSet>
<Test name="test1" functForm = "linear" available_at_parent="no"

isOutput = "yes">
<coeff sub = "input" outputNum="0" value = "1.0"/>
<coeff sub = "constant_term" value = "2.718"/>

<error
random_error_dist = "normal"
random_error_mean = "0.0"
random_error_var = ".02"
systematic_error = ".003"/>

<bounds target = "5.85" upper = "5.92" lower = "5.65"/>

</Test>
</TestSet>
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</System>

<System name = "C" >

<SubSystemSet>
<System name = "input" value = "1.6"

numberToGenerate = "1">
<error

random_error_dist = "normal"
random_error_mean = "0.0"
random_error_var = ".02"
systematic_error = ".003"

/>
</System>

</SubSystemSet>

<TestSet>
<Test name="test1" functForm = "linear" available_at_parent="no"
isOutput = "yes">
<coeff sub = "input" outputNum="0" value = "2.0"/>
<coeff sub = "constant_term" value = "1.414"/>

<error
random_error_dist = "normal"
random_error_mean = "0.0"
random_error_var = ".03"
systematic_error = ".004"

/>

<bounds target = "4.61" upper = "4.7" lower = "4.58"/>

</Test>
</TestSet>

</System>

</SystemSet>

The hard part is the specification of the tests. We need to design this part carefully and be
clear about the errors that we propose to address.

Remarks on describing the tests:

• For the linear case, we can simply supply a parameter for each subsystem and, pos-
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sibly, a constant.

• Each subsystem can provide several values to the system in which it operates. Thus a
test may involve only a subset of the inputs from a given subsystem and only a subset
of the subsystems.

• A system described as above can be considered as the general “family” of such sys-
tems. Tests can be used to learn about the family and/or to learn about the actual
system in which they are embedded.

• A test of a system gives information about the family and thus has an effect on other
systems that contain systems from the same family.

• We have put a specification of a simple, normal error with a bias. This can clearly be
expanded as necessary to create more varying situations.

• Our goal will be to construct a testing strategy that will yield information about
performance of the systems at other levels in the overall system.

4.2 Specification of a Sample Set

Given the above descriptions of systems, we need to be able to specify a means to gen-
erate a sample. We suppose that there will be fielded systems of various ages along with
new systems that have been recently manufactured. These systems may contain a variety
of different versions of the components or subsystems. Here is our first cut at specify-
ing a sample. The first section of this file simply specifies where the input comes from
(sampleB.xml) and where to store the output (sampleB.xml).

<Generate>

<Files
allSystemsInFile = "systemsB.xml"
sampleXML = "sampleB.xml"

/>

<Sample>

<System name = "A" numberToGenerate= "2">

<SubSystemSet>
<System name="B" numberToGenerate = "1">

<SubSystemSet>
<System name = "input" numberToGenerate ="1"/>
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</SubSystemSet>
</System>
<System name="C" numberToGenerate = "1">

<SubSystemSet>
<System name = "input" numberToGenerate ="1"/>

</SubSystemSet>
</System>

</SubSystemSet>
</System>

<System name="B" numberToGenerate="1">
<SubSystemSet>

<System name="input" numberToGenerate = "1"/>
</SubSystemSet>

</System>

<System name="C" numberToGenerate="1">
<SubSystemSet>

<System name="input" numberToGenerate = "1"/>
</SubSystemSet>

</System>

</Sample>

</Generate>

Thus the specification of the sample needs to include the number of each system type
required and, for each type, the specification of the particular subsystems. As noted above,
we could allow for some randomness in this choice. Although this could require a fairly
long XML description, it is relatively straightforward.

A Python script has been written to use the information from the specification script (gen-
erateB.xml) and the system file (systemB.xml) and produce the output sample (contained
in sampleB.xml). The script is called GenTotalB.xml and is in the src directory. The output
of this first run is a sample with two instances of the system A and one instance each of
systems B and C. Note that since A contains B and C, there are two instances of B and C
that are contained in the two samples of A. Here is the output.

<SampleSet>
<System sampleNumber=’0’ name=’A’>
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<SubSystemSet>
<System sampleNumber=’1’ name=’B’>

<SubSystemSet>
<System outputNum=’0’ name=’input’ value=’3.03834385956’>

<SubSystemSet/>
<TestSet/>

</System>
</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’5.62580035036’/>

</TestSet>
</System>
<System sampleNumber=’2’ name=’C’>

<SubSystemSet>
<System outputNum=’0’ name=’input’ value=’1.54628349191’>

<SubSystemSet/>
<TestSet/>

</System>
</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’4.58812458191’/>

</TestSet>
</System>

</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’19.6007914937’/>

</TestSet>
</System>
<System sampleNumber=’3’ name=’A’>

<SubSystemSet>
<System sampleNumber=’4’ name=’B’>

<SubSystemSet>
<System outputNum=’0’ name=’input’ value=’3.05499334439’>

<SubSystemSet/>
<TestSet/>

</System>
</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’5.83762072724’/>

</TestSet>
</System>
<System sampleNumber=’5’ name=’C’>

<SubSystemSet>
<System outputNum=’0’ name=’input’ value=’1.54157915002’>

<SubSystemSet/>
<TestSet/>

</System>
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</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’4.51990787038’/>

</TestSet>
</System>

</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’20.0708486615’/>

</TestSet>
</System>
<System sampleNumber=’6’ name=’B’>
<SubSystemSet>
<System outputNum=’0’ name=’input’ value=’3.02685978074’>
<SubSystemSet/>
<TestSet/>

</System>
</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’5.85551711292’/>

</TestSet>
</System>
<System sampleNumber=’7’ name=’C’>
<SubSystemSet>
<System outputNum=’0’ name=’input’ value=’1.33212402105’>
<SubSystemSet/>
<TestSet/>

</System>
</SubSystemSet>
<TestSet>
<Test outputNum=’0’ name=’test1’ value=’3.91317795007’/>

</TestSet>
</System>

</SampleSet>
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5 Conclusion

In this paper we have considered the problem of determining the reliability of complex
hierarchical systems. In particular, we have considered “engineered” systems where we
know the intended performance of each component and have functional relationships for
how components are used at higher levels. We have described in detail the assumptions we
make on the system, our definition of the reliability in this context, and our procedure for
determining the reliability based on tests at various levels within the system. Finally, we
have shown how to estimate confidence in the estimate for the reliability.

We recognize that there is much to do to complete even this early phase of the project.
Several things are highlighted below:

• Complete the analysis of the suggested procedures to ensure that we are on a solid
mathematical foundation.

• Work out detailed procedures and algorithms for carrying out the indicated compu-
tations.

• Pay careful attention to the retention of intermediate computational results in order
to be able to re-use these results as necessary in later stages.

• Develop a suite of test examples and run these procedures to demonstrate proof-of-
concept.

Other issues may arise as we complete these tasks; we will continue to update this docu-
ment as necessary.
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