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Abstract

In this report we will describe some nonlinear eigenvalue problems that
arise in the areas of solid mechanics, acoustics, and coupled structural acous-
tics. We will focus mostly on quadratic eigenvalue problems, which are a
special case of nonlinear eigenvalue problems. Algorithms for solving the
quadratic eigenvalue problem will be presented, along with some example
calculations.
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1 Introduction

In many structural systems, linear eigenvalue analysis is adequate for predicting
the modal response. In that case, standard techniques [13] can be used to compute
the eigenvalues and eigenvectors. Furthermore, for a symmetric positive definite
system, the resulting eigenvalues and eigenvectors are purely oscillatory [14].

However, in many cases a linear eigenvalue formulation is not a sufficient de-
scription. This is particularly true in the case of structures with physical damping
(i.e. viscoelastic, hysteretic damping, etc), rotating structures, exterior acoustic flu-
ids, and structures that interact with an acoustic fluid. In these cases, nonlinear
eigenvalue formulations are required to correctly describe the vibration of the sys-
tem. The resulting eigenvalues and eigenvectors are usually complex-valued, with
the real part describing the damped part of the solution, and the imaginary part de-
scribing the oscillatory part. In these cases, special numerical methods are required
to compute the complex-valued modes.

In this report we will describe typical nonlinear eigenvalue problems that arise in
solid mechanics, acoustics, and coupled structural acoustics. We will focus mostly
on quadratic eigenvalue problems, which are a special case of nonlinear eigenvalue
problems. Algorithms for solving the quadratic eigenvalue problem will be pre-
sented, along with some example calculations.

The linear eigenvalue problem is usually written in the form

Ku+λ 2Mu = 0 (1)

where K is the tangent stiffness matrix, M is the mass matrix, u is the unknown
eigenvector, and λ is the unknown eigenvalue. This eigenvalue formulation is ade-
quate for structures that are stationary, with non-dissipative material models.

The next level of complexity is the quadratic eigenvalue problem, which is usu-
ally written in the form

Ku+λ 2Mu+λCu = 0 (2)

where C is an additional system matrix, usually referred to as the “damping” ma-
trix. Examples where the quadratic eigenvalue problem is an adequate formulation
include structures with proportional damping models, and acoustics with simple ab-
sorbing boundary conditions exterior boundary conditions. An interesting special
case is when the damping matrix C is gyroscopic, or skew-symmetric. In this case,
the system is purely conservative. Examples of this occur in rotating structures, and
coupled structural acoustics with no exterior boundary conditions.
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Both the linear and quadratic eigenvalue problems are special cases of the poly-
nomial eigenvalue problem, which takes the form

(A0 +λA1 +λ 2A2 +λ 3A3 + ...λ nAn)u = 0 (3)

where A0,A1, ...An are the system matrices. With the proper choices of A0,A1, ...An,
both the linear and quadratic eigenvalue problems can be recovered.

All of the previous formulations are special cases of the more general nonlinear
eigenvalue problem

f (A0,A1, ...An,λ ) = 0 (4)

where, again, A0,A1, ...An are the system matrices, and f (A0,A1, ...An,λ ) is some
nonlinear function of these matrices, λ , and possibly other parameters as well. Vis-
coelastic materials, like rubber, require a nonlinear eigenvalue formulation to de-
scribe their vibration behaviour. This is because the stiffness properties are not
constant (like in the case of the linear and quadratic eigenvalue problems), but in-
stead are frequency-dependent.

In this report, we will focus on the quadratic eigenvalue problem. Specialized
algorithms for this problem will be described. Algorithms for computing many of
the modes with smallest absolute value are emphasized. To compute the smallest
modes first, it is necessary to invert the eigenvalue problems, which involves solving
linear systems.

An important property of different formulations of an eigenvalue problem is the
character of the resulting linear systems. In particular, formulations that lead to
unsymmetric linear systems are not pursued here. A new framework is contributed
that make it possible to solve a category of QEPs using a scalable iterative linear
solver for SPSD linear systems.

The classic approach to solving the eigenvalue problem is to shift and solve the
corresponding linear systems (see [2], §9). The characteristics of linear systems
depend on many things, including whether or not the damping matrix is symmet-
ric. With general types of damping, C is unsymmetric and possibly complex. For
example, for a rotating structure, C is skew-symmetric, and for coupled structural
acoustics, C is also skew-symmetric.

If the damping matrix is symmetric positive semi-definite, then for positive
shifts of the quadratic problem, the linear systems are SPD. Furthermore, Cayley
transforms are practical (see [2], §9.2.3 page 286). Different formulations of the
QEP are studied in [8] . In the Cayley formulation, the right-most eigenvalues are
transformed to the largest eigenvalues, but the linear systems may be symmetric
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indefinite depending on the transforms. On the other hand if C is unsymmetric, the
the shifted linear systems are unsymmetric, and only trivial shifts are available.

Finally, using the algorithms developed in this paper, a number of example prob-
lems have been solved. These examples corresponded to several different types of
physical damping that are common in engineering applications. These included
proportional damping, dashpot elements, and coupled structural acoustics.
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2 Formulations for Quadratic Eigenvalue Problems

A quadratic eigenvalue problem is equivalent to a generalized eigenvalue problem
or pencil, (A,B). The equivalence transformation is called linearization. Four
standard linearizations are reviewed in §2.1. For a QEP with some type of structure,
different linearizations may also have a related structure. In §2.2, two families of
linearizations are discussed that interpolate the four standard linearizations.

If A and B are symmetric and either A or B is positive definite, then (A,B) is a
symmetric definite pencil. A symmetric definite pencil may be reduced to a sym-
metric EVP, and has real eigenvalues. Conversely a pencil with unreal eigenvalues
is not symmetric definite. An example of a symmetric pencil that has unreal eigen-
values with B symmetric positive semi-definite may be found in [11] on page 48
and equation (75).

If A and B are symmetric and (A,B) is not a symmetric definite pencil, then
(A,B) is a symmetric indefinite pencil. Such formulations of the QEP are very
popular [10]. A feature of the symmetric indefinite pencil is that the left and right
eigenvectors coincide. The primary problem with the symmetric indefinite formu-
lation is that a nonsingular indefinite B defines an indefinite inner product. A B
normalized eigenvector may have an arbitrarily large l2 norm. Another problem
with the symmetric indefinite formulation is that the null spaces of the matrices
(A,B) may coincide.

In an unsymmetric definite pencil, A is unsymmetric and B is symmetric posi-
tive definite. The unsymmetric definite pencil is used here because it requires the
solution only of symmetric positive semi-definite linear systems.

2.1 Standard Linearizations

The time-domain version of equation 2 is

Mü+Cu̇+Ku = 0. (5)

Since a high order differential equation is equivalent to at least one first order system
of differential equations, we can reduce equation 5 to a first order system, which is
then amenable to methods that have been developed for linear eigenvalue problems.
Approaches I-IV below are the standard linearizations of the state space problem.
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Approach I The second order equation equation (5) augmented with the identity
u̇ = u̇ leads to the system

[

I 0
0 M

][

u̇
ü

]

=

[

0 I
−K −C

][

u
u̇

]

. (6)

Approach II A symmetric formulation may be derived by multiplying the first
row of equation (6) by K and the second row by −1.

[

K 0
0 −M

][

u̇
ü

]

=

[

0 K
K C

][

u
u̇

]

. (7)

Approach III The construction in Approach I with the rows of the state vectors
swapped leads to

[

0 I
M C

][

ü
u̇

]

=

[

I 0
0 −K

][

u̇
u

]

. (8)

Approach IV If C is symmetric, then equation (8) may also be symmetrized by
multiplying equation (8) row one by M.

[

0 M
M C

][

ü
u̇

]

=

[

M 0
0 −K

][

u̇
u

]

(9)

If the damping matrix C is symmetric, then equations (7) and (9) are symmetric
pencils. The difference between a symmetric pencil and a symmetric definite pencil
is not well known. A Lemma in the proof that any matrix is similar to a unique
Jordan Canonical Form is that any matrix is a product of two symmetric matrices. In
other words, any algebraic eigenvalue problem is equivalent to a symmetric pencil.
In contrast, there exists a symmetric eigenvalue problem that is equivalent to a given
symmetric definite eigenvalue problem.

Symmetric pencils do have at least three useful properties. First, they are per-
fectly scaled. In general, a symmetric indefinite linear solver may be applied to
(A,B), instead of a general sparse linear solver. Third, the left and right eigenvec-
tors coincide. Left eigenvectors may be used in the transient problem to project
the initial conditions into the right eigenvectors, for sensitivity calculations. In the
absence of symmetry, one may also project using a SVD.
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2.2 More Linearizations

Approaches I-IV are instances of families of linearizations. We consider the fol-
lowing two families of linearizations (A,B), which are equivalent to the QEP. The
companion linearization is for any nonsingular matrix N,

A =

[

0 N
−K −C

]

, B =

[

N 0
0 M

]

. (10)

The justification that the families of linearizations here correspond to the QEP is in
§2.3 and [9]. Another linearization is for any nonsingular matrix H,

A =

[

K 0
0 H

]

, B =

[

−C −M
H 0

]

. (11)

Approaches I and III correspond to the linearizations in equation (10) with N = I
and equation (11) H = −I. If N and H are SPD matrices, then equations (10)
and (11) are unsymmetric definite pencils. In finite precision arithmetic, using an
extremely ill conditioned matrix occasionally leads to negative mass problems. For
this reason, the unsymmetric definite formulation of (11) is avoided.

Approaches II and IV are the forms of the linearizations (10) and (11) that pre-
serve symmetry of C. The Approaches correspond to N =−K and H =−M respec-
tively. These are symmetric indefinite pencils. Similar choices of N and H preserve
skew-symmetry of C (see §2.5, 4.4, 5.3).

2.3 One Eigenvalue Problem

The QEP admits the families of linearizations parameterized by nonsingular N and
H in equations (10) and (11) respectively. For clarity, let’s assume that K is symmet-
ric positive definite. As will be demonstrated below, all of these pencils correspond
to one reduced eigenvalue problem. A similar argument justifies the equivalence of
equations (11) and (10).

Equation (11) for any nonsingular N admits the factorization

A =

[

N 0
0 I

][

0 I
−I −C

][

K 0
0 I

]

.

The term-wise inverse is

A−1 =

[

K−1 0
0 I

][

−C −I
I 0

][

N−1 0
0 I

]

.
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In the reduced problem, N cancels out.

A−1B =

[

K−1 0
0 I

][

−C −I
I 0

][

I 0
0 M

]

=

[

K−1 0
0 I

][

−C −M
I 0

]

The similar argument runs back to equation (11).

In Arnoldi’s method for the eigenvalue problem, the sequence of linear systems
zi = A−1Bzi−1 is solved. Only linear systems Kxi = bi must be solved. For any
nonsingular N or H, the linear systems are

[

K 0
0 I

]

zi =

[

−C −M
I 0

]

zi−1

For each i, let [xi;yi] := zi. Then xi is the solution of −Kxi = Cxi−1 + Myi−1 and
yi = xi−1.

2.4 Formulations for Singular K

K may be symmetric positive semi-definite with known null space. In such cases
an orthonormal matrix Φ may be constructed such that KΦ = 0. Here we discuss
different options that are available if K is singular.

The established algorithms for singular K all involve nontrivial shifts. As men-
tioned in § 1, there are two ways to think about shifts. One may either linearize and
transform the pencil, or transform the QEP and linearize. The transformation may
be either a shift (translation) or a Cayley (fractional linear) transformation. If C is
unsymmetric, none of the formulations (with nontrivial shifts) generate either SPD
or SPSD linear systems.

Shift invert formulations with zero shift may be solved as long as the eigenvalue
problem and linear systems remain consistent. Consistency is maintained using
deflation (see §4).

2.5 Conservative gyroscopic systems

A system in which the coefficient matrix of the velocity vector is skew-symmetric,

Mü+Gu̇+Ku = f (t)

is called a conservative gyroscopic system. A spinning structure, [14], is an exam-
ple of a conservative gyroscopic system. An additional example of a conservative
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gyroscopic system is a structural acoustics model that neglects the damping mech-
anisms in the structure and fluid (e.g. inviscid fluid and no exterior boundaries,
[6, 7, 15]). In the latter case the gyroscopic matrix represents a coupling between
the fluid and solid, but involves no energy dissipation.

Although C appears to be a ’damping’ term, the system 2.5 has no damping. In
the associated eigenvalue problem, the eigenvalues are all oscillatory (see [14] or
[8] for details). There is no physical dissipation in the system, and thus the term
conservative.
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3 Accuracy

Inaccurate solutions of the QEP are easy to compute and misleading. One of our
goals is to develop scalable algorithms and software for complex problems. The
scalable algorithms involve inexact solutions to linear systems and eigenvalue prob-
lems. This makes finding a good solution to the accuracy problem a requirement.
Accuracy is improved in three ways.

First the QEP is scaled to reduce its condition number. In [8] Theorem 7 is
the following: If ‖M‖ = ‖C‖ = ‖K‖ = 1, then solving the companion matrix lin-
earization with a backward stable algorithm for pencils is backward stable for the
QEP. Both the matrices and the eigenvalues are scaled: K → DKD and λ → λ/µ .
The scaling makes it possible to transform K and M to matrices of unit norm. The
norm of the damping matrix changes. The authors numerical results without scaling
are inaccurate. With scaling, small residuals imply convergence. Furthermore, the
residuals for the scaled problem are comparable the linear system relative residual
norms.

It has been observed that in practice, for the scaled problem, ‖C‖ is smaller
than one. §3.1 contains a demonstration that with certain types of damping, if the
eigenvalue problem has no real eigenvalues, ‖C‖ is small.

Second, the null space is deflated from the pencil using a representation based
on a Generalized Schur form. The computation is done using orthogonal (symmet-
ric) projections. Oblique projections are used to distinguish whether a null vector of
K corresponds to a double root of the pencil, or the null vector corresponds to one
zero root and one very small root of the pencil. Here the potential ill conditioning
is due to ill conditioning of the QEP. Initial Arnoldi vectors are chosen to mollify
the impact of the oblique projections.

Lastly, the eigenvector for the QEP is extracted from the linearization in a way
that minimizes the residual norms. The QEP is linearized, and pencil is of twice the
order. Both of the components of the eigenvector of the pencil correspond to the
same eigenvector of the QEP. A SVD is used to determine the optimal approximate
eigenvector from the subspace. If the damping matrix is real, then the eigenvalues
are computed in complex conjugate pairs, and this too is exploited.

3.1 Scaling and Lightly Damped Systems

The scaling process has two steps. Step one is a diagonal matrix congruence,

(K,C,M)→ (DKD,DCD,DMD),

15



such that DKD is unit diagonal. Step one is a scaling (K,C,M),λ → (Kκ,Cκµ,Mκµ2),λ/µ
for

κ = 1/‖K‖ µ =
√

‖K‖/‖M‖.

Rayleigh Damping With Rayleigh damping such that there are no real eigenval-
ues, the norm of the scaled damping matrix is always small.

First, we consider Rayleigh damping. In this case, we start with equation 2,
with Rayleigh damping, C = Ka+Mb, where a and b are nonnegative numbers less
than one. Furthermore, we suppose that the undamped modes, Kφ = Mφω 2, satisfy
ωmin ≤ ω ≤ ωmax.

All of the eigenvalues of the damped problem are complex if a < 2/ωmax and
b < 2ωmin. Using the definition of C in the quadratic eigenvalue problem, and
collecting terms, we see that the eigenvalues of the undamped and damped problems
are related through

ω2 = −(λ 2 +be)/(aλ +1)

Equivalently

λ 2 +(aω2 +b)λ +ω2 = 0.

For the modes to be unreal, the discriminant must be negative:

0 > (aω2 +b)2 −4ω2 = ((aω2 +b)−2ω)((aω2 +b)+2ω)

or more simply 0 > aω2 +b−2ω . This implies that

b/(1+
√

1−ab) < ω < (1+
√

1−ab)/a.

The above expression comes from the approximating 1+
√

1−ab by 2.

Second, in the scaled quadratic eigenvalue problem, the norm of the damping
matrix is small. If the quadratic eigenvalue problem is scaled

Ks = Kκ,Cs = Cκµ,Ms = Mκµ2,

so that κ = 1/‖K‖ and µ =
√

‖K‖/‖M‖.

‖Cs‖ = ‖Cµκ‖ = ‖Kµκa+Mµκb‖ ≤

16



‖Kµκa‖+‖Mµκb‖ =

‖K‖µκa+‖M‖µκb =

a
√

‖K‖/‖M‖+b
√

‖M‖/‖K‖ ≥ 2
√

ab.

More useful is an upper bound.

We can show that the scaled damping matrix is not large if the eigenvalue prob-
lem is scaled so that the mass matrix is well conditioned. Specifically,

‖Cs‖ ≤ 2+2
√

cond(M) ωmin/ωmax.

To prove the claim, we use upper and lower bounds on ‖K‖/‖M‖. We denote
by Ω the diagonal matrix of undamped modes. The generalized eigenvalue problem
is equivalent via the Cholesky factorization M = RT R to the matrix A = R−T KR−1

with eigenvalues Ω2. Expressing K interms of A and R, K = R′AR, take norms, and
expand:

‖K‖ = ‖RT AR‖ ≤ ‖RT‖ ‖A‖ ‖R‖ = ‖R‖2‖Ω‖2 = ‖M‖ ‖Ω‖2.

Or ‖K‖/‖M‖ ≤ ‖Ω‖2. Similarly for the lower bound,

‖Ω2‖ = ‖A‖ = ‖R−T KR−1‖ ≤ ‖R−T‖ ‖K‖ ‖R−1‖ =

= ‖R−1‖2‖K‖ = ‖M−1‖‖K‖ = cond(M)‖K‖/‖M‖.

Or

‖M‖/‖K‖ ≤ cond(M)/‖Ω‖2. (12)

Substituting the upper bounds in

‖Cs‖ ≤ a
√

‖K‖/‖M‖+b
√

‖M‖/‖K‖

to find

‖Cs‖ ≤ a‖Ω‖+b
√

cond(M)/‖Ω‖.
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Now we substitute the estimates of a and b from the earlier argument: a‖Ω‖ < 2
and

√

cond(M)b/‖Ω‖ < 2
√

cond(M)ωmin/ωmax.

Add the two terms to establish the claim.

Modal Damping Modal damping is commonly a used approach for introducing
damping into the structure. Here again assuming that the damping is light enough
all the modes are unreal, and that the condition number of the mass matrix is less
than the maximum ratio of eigenvalues, then the scaled damping matrix has small
norm. Modal damping refers to

C = 2MΦΩΓΦT M

for a diagonal matrix Γ. The diagonal entries (γ j) are user specified parameters.
The eigenvectors of the undamped problem are mass normalized as usual.

Modal damping changes the eigenvalues but not the eigenvectors,

(K +Cλ +Mλ 2)φ j = φ j (ω2
j +2γ jω jλ +λ 2)

Modal damping changes the mode iω j to

ω j(i
√

1− γ2
j + γ j)

The eigenvalues are in the left half plane iff Γ ≥ 0, and the eigenvalues are unreal
iff Γ < 1.

Now we argue, as for Rayleigh damping, that

‖MΦΩΓΦT M‖ ≤ ‖M‖ ‖ΩΓ‖

For the scaled damping matrix Cs, by equation (12),

‖Cs‖ ≤ 2‖ΩΓ‖
√

‖M‖/‖K‖ ≤ 2‖ΩΓ‖
√

cond(M)/‖Ω‖

In practice, only the mode shapes for the smallest modes are computable, ‖ΩΓ‖ ≈
ωmin, and the bound is similar to the bound for Rayleigh damping.
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3.2 Perturbation Theory

The tools developed in this section are useful for showing that, without scaling,
the computed solutions of the QEP are highly inaccurate. Differential perturbation
theory will be used to compute reference solutions to the eigenvalue problem. Here
we assume that it is possible to factor the shifted problem. Continuation from the
modes for the undamped problem is used, with the continuation parameter being γ .
Refinement is also used (γ = 1).

We define Q(,) and F(, ,) by

Q(λ ,γ) = K +Cλγ +Mλ 2, F(x,λ ,γ) = Q(λ ,γ)x.

The partial derivatives of Q are

∂γQ = Cλ , ∂λ Q = C +Mλ2.

The first order differential of F is

F(x+dx,λ +dλ ,γ +dγ) = F +Qdx+∂λ Qdλ +∂γ Qdγ

The standard normalization of dx
dγ is x∗ dx

dγ = 0. The differentials are related by

[

Q ∂λ Qx
x∗ 0

]

[

dx
dγ
dλ
dγ

]

=

[

−∂γ Qx
0

]

For refinement (γ = 1), in the right-hand side replace −∂γQx by −F .

If λ is a multiple eigenvalue, then the linear system is singular.
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4 Null Space Deflation

The problem of SPSD K with known null space Φ is addressed using deflation.
Deflation refers to removing eigenvectors from the problem as they converge. The
smallest modes tend to converge first in inverse iteration. In linear problems, delfa-
tion transforms the problem so that the smallest unconverged eigenvalues tend to
converge next.

4.1 Deflation for (K,M)

A less complicated example follows that illustrates deflation. Deflation is used for
the symmetric definite pencil (K,M) if K is singular. The null space of K, the
rigid body modes, are determined accurately by the geometry (coordinates) and
the partial differential equation. It is possible to deflate the invariant subspace of
rigid body modes using an matrix of the form K+M. Restarts are implemented by
deflating a computed invariant subspace.

Recall the generalized symmetric eigenvalue problem with decomposition is
KΦ = MΦΩ2 and ΦT MΦ = I. In exact arithmetic the Lanczos algorithm deter-
mines a M-orthogonal V and a symmetric tridiagonal T such that K−1MV = V T
via the three term recurrence

vk+1βk+1 = K−1Mvk − vkαk − vk−1βk.

The eigenvalue decomposition TW = WΩ−2 determines the eigenvalues and eigen-
vectors Φ = VW .

Given an M-orthogonal basis for the null space of K, the Lanczos algorithm pro-
ceeds with a specific definition of K+. The proof that V T

k MΦ1 = 0 by induction on
k explains the issues. The consistency of linear system that defines v2 is guaranteed
by multiplying the initial Lanczos vector by I−Φ1ΦT

1 M. Suppose that V T
k MΦ1 = 0

for an arbitrary k ≥ 1. By construction Kuk = Mvk is consistent. The least squares
solution is characterized by ΦT

1 uk = 0. In contrast the Lanczos algorithm ensures
that ΦT Mvk+1 = 0, by proceeding with

vk+1βk+1 = (I−Φ1ΦT
1 M)uk. (13)

Eigenvalue problem restarts are implemented in the same way. Any M-orthogonal
subspace Φ1 that is invariant, KΦ1 = MΦ1Ω2

1, is deflated using equation (13).
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4.2 Null Space Deflation in QEP

The companion linearization, (6), leads to the pencil (A,B) for

A =

[

0 I
−K −C

]

, B =

[

I 0
0 M

]

. (14)

Deflation in the pencil is based on the generalized Schur form. A generalized
Schur form of (A,B) is

(A,B) = Z(TA,TB)Q∗ Z,Q unitary, TA,TB triangular.

Φ spans the null space of K and is orthonormal. For

Ψ =

[

Φ
0

]

Ψ̃ =

[

0
Φ

]

there holds

AΨ = 0, ΨT A = Ψ̃T , BΨ = Ψ, ΨT B = ΨT .

This suggests that it may be possible for the generalized Schur form to use orthog-
onal [Ψ,Z] and [Ψ,Q]. The potential real Schur form is

A = [Ψ,Z]

[

A11 A12
0 A22

]

[Ψ,Q]T B = [Ψ,Z]

[

B11 B12
0 B22

]

[Ψ,Q]T

If this holds, then

A11 = 0, ΨA12QT = ΨΨ̃T , B11 = I, B12 = 0.

The reason for mentioning generalized Schur forms forms is that the previous equa-
tion is equivalent to

A = ΨΨ̃T +ZA22QT , B = ΨΨT +ZB22QT

The pencil (ZA22QT ,ZB22QT ) is unsymmetric definite over Ψ⊥. Computations are
done in the original coordinate system to preserve sparsity.
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For Π = I −ΦΦT , the deflated pencil is

Ad =

[

0 Π
−K −C

]

, Bd =

[

Π 0
0 M

]

. (15)

A solution of the QEP corresponds to a solution of the pencil by construction, but
not conversely. Suppose that

(Ad −Bdλ )

[

x
y

]

= 0.

If λ 6= 0, then λ and y solve the QEP. The equation Πy = Πxλ indicates that in
practice the eigenvector that corresponds to λ will be in the span of [x,y,Φ]. The
case λ = 0 is subtle. If CΦ = 0, then AdΨ̃ = 0. If C is skew, then

Ad

[

K+CΦ
−Φ

]

= 0.

In addition to the space spanned by the columns of Ψ, the null space of Ad contains
all y = Φa for which there exists an x such that Kx+Cy = 0. The dimension of the
set of eigenvectors of the deflated problem is

nullity(Ad) = nullity(K)+nullity(ΦTCΦ).

If ΦTCΦ is singular, then some zero eigenvectors of the deflated problem are not
zero eigenvectors of the QEP.

The intersection the null spaces of K and C are the internally damped rigid body
modes. Other rigid body modes are externally damped. The externally damped
rigid body modes may have gyroscopic parts R, such that R′CR = 0. The three
kinds of linear damping, internal, external gyroscopic and external non-gyroscopic
are each treated differently.

4.3 ARPACK Operations

The sparse matrix algorithm applies ARPACK with SPSD mass matrix Bd . Multi-
plication by Bd includes a redundant projection. The additional projection reduces
the inconsistency of linear systems in finite precision arithmetic.

Arnoldi’s method: AdV H = BdV and V T BdV = I
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1. Find u: Adu = Bdv j+1 and ΦT u = 0.

2. H(1 : j, j) = V T
j Bdu

3. u = u−V jH(1 : j, j)

4. v j+1H( j +1, j) = u

A sequence of linear systems of the form

[

0 Π
−K −C

][

x
y

]

=

[

b
c

]

, φ T b = φ T x = 0.

are solved. −Kui = Cxi−1 +Myi−1 is solved such that ΦT ui = 0.

If ΦTCΦ is well conditioned, then xi = ui + ΦT vi. The vi−1 term ensures that
the linear system that defines xi is consistent,

(ΦTCΦ)vi = −ΦTCui −ΦT Myi.

In general ΦT y is nonzero. The component of y along Φ is determined by the
condition that x exists.

• y := b

• a := Cy+ c

• Repeat twice

1. d := ΦT a

2. e := Φd

3. f := Ce

4. y := y− e

5. a := a− f

• Solve Kx = −a

The right-hand side for the linear system is computed using an oblique projection
with condition number ‖C‖/λmin(ΦTCΦ).

The first author has found that in his experience, for a problem when ΦTCΦ
is well conditioned, an initial Arnoldi vector from the space spanned by [0;Φ] is
preferable. C is usually small in norm, and [0;Φ] is near to a null vector of Ad ,

Ad

[

K+CΦ
−Φ

]

=

[

0
ΦTCΦ

]

.
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Iterative methods for eigenvalue problems amplify the displacements in the di-
rection of the eigenvectors of the eigenvalues with smallest modulus. In the se-
quence of linear systems Kxi = bi, ‖ΦT bi‖ grows exponentially with i without re-
orthogonalization. One motivation for using the Bd inner product is that it provides
an extra opportunity to orthogonalize the Arnoldi vectors to Ψ. ARPACK does not
provide users access to the Arnoldi vectors, but, as it happens, the current Arnoldi
vector is actually stored in the resid vector.

4.4 Deflation with gyroscopic damping

In a conservative gyroscopic system (§2.5) C is skew-symmetric and ΦTCΦ = 0.
The implementation of the deflation differs from (§4.3). The details of deflation in
a conservative gyroscopic system are worked out under the assumption that

rank(CΦ) = rank(Φ).

The null space of Ad (c.f. equation (15)) contains a second set of left and right
vectors

L2 =

[

CT Φ
Φ

]

, R2 =

[

K+CΦ
−Φ

]

.

A conservative gyroscopic system admits a generalized Schur form (see §4.2)

QHAZ = [0,0,∗] QHBZ =





I 0 0
0 ∗ ∗
0 0 ∗



 .

Alas, the additional null vectors of Ad are not eigenvectors of B.

To preserve sparsity, it is necessary to use instead an oblique projection. Multi-
plying out terms shows that

LT
2 BR2 = ΦTCK+CΦ−ΦT MΦ.

Note that −LT
2 BR2 is SPD.

The oblique projection I − R2(LT
2 BdR2)

−1LT
2 Bd is applied to Arnoldi vectors

along with Π. The oblique projection may be ill conditioned. In the authors experi-
ence, the condition number of the projection has never been larger than four. A user
would not know about the projection, but might observe that Arnoldi’s method con-
verges slowly or that the eigenvalues are inaccurate. It is easy to check the condition
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number of the oblique projection. A user must be prepared for the extremely remote
possibility that a simulation is not possible due to an ill conditioned projection.

Another significant implementation issue is the selection of the initial Arnoldi
vector. The goal is to choose v1 so that LT

2 BdA−1
d Bdvi is very small. As AT

d v1 ap-
proaches BdL2, the Bd-orthogonality of the Arnoldi vectors meets the goal. For
simplicity, assume that Φ has rank one. For some scalar α determined by normal-
ization, v1α = [X ;Y ] for X and Y determined as follows.

1. Find G such that (RT
2 R2)G = LT

2 BR2.

2. Find Y such that KY = K+CΦG−CT Φ.

3. Find J such that (ΦTCCT Φ)J = ΦTCMΦ+ΦT MY .

4. F = CT ΦJ.

5. X = ΠMΦ−F

The correction term F ensures that v2 exists, ΦTCX +ΦT MY = 0.

4.5 Deflation with internal damping

If in a conservative gyroscopic system rank(CΦ) < rank(Φ), the construction of
§4.4 still works. In the authors experience though, the only case in which rank(CΦ) <
rank(Φ) is the internally damped case, CΦ = 0. The much simpler choice L2 =
R2 = Ψ̃ leads to a projection that is symmetric with respect to M. Performance is
less sensitive to the choice of initial vector.
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5 Numerical Examples

In this section we present results from several examples that were designed to test
the algorithms presented in the preceding sections. All of the examples have a
damping matrix, and the main interest is how the eigenvalues are changed by the
presence of the damping. The examples are proportional damping, dashpot damp-
ing, and coupled structural acoustics.

5.1 Proportional Damping

For the one dimensional case, the exact solution for an elastic bar that is given stiff-
ness or mass proportional damping follows. After that, a more general procedure
is presented that allows one to compute the complex eigenvalues resulting from a
proportionally damped structure, given a closed form expression for the oscillatory
eigenvalues of the undamped structure.

Stiffness Proportional Damping We follow a similar derivation as was given in
[5]. In order to facilitate the derivation, we define a complex modulus as

E∗ = E(1+β s)

where E is the elastic modulus, β is the stiffness proportional damping coefficient,
and s is the complex-valued eigenvalue. The equations of motion of the bar are

−E∗uxx +ρs2u = 0

where ρ is the density, and the ends of the bar are subjected to homogeneous bound-
ary conditions at x = 0 and x = L

u
′
(0) = 0 (16)

u
′
(L) = 0 (17)

(18)

We note that the system defined above with complex modulus is equivalent to a
system with real-valued modulus but with added stiffness proportional damping.

The general solution to these equations of motion is

u = Ae

√

ρ
E∗ sx

+Be
−

√

ρ
E∗ sx
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where A and B are arbitrary constants. The boundary condition u
′
(0) = 0 leads to

the condition A = B. Applying the second boundary condition, u
′
(L) = 0, leads to

the condition
√

ρ
E∗ sL = inπ

or

sn =
inπ
L

√

E∗

ρ
(19)

=
inπ
L

√

E(1+β sn)

ρ
(20)

(21)

This equation can be solved exactly to obtain the exact complex-valued frequencies
of the system with stiffness proportional damping.

Figure 1 shows a comparison between the exact and computed eigenvalues for
the case of stiffness proportional damping. Two mesh refinements were performed
on the original mesh in order to confirm the convergence of the computed eigenval-
ues to the exact ones. As seen in Figure 1, the computed eigenvalues converge to
the exact ones.

Mass Proportional Damping In this case, the equations of motion are

−Euxx +αρsu+ρs2u = −Euxx +ρs [α + s]u = 0

where α is the amount of mass proportional damping, and E is a real-valued elastic
modulus, in contrast to the complex-valued one in the case of stiffness proportional
damping.

The general solution to this equation is

u = Ae

√

ρs[α+s]
E sx +Be−

√

ρs[α+s]
E sx

Applying the boundary conditions in the same way as before leads to the condition
A = B, and the condition

sn = =
inπ
L

√

E
ρs [α + s]

(22)

(23)
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This is a different nonlinear equation that may be solved to obtain the exact complex-
valued eigenvalues of the system with mass proportional damping.

For combined mass and stiffness proportional damping, the same procedures
can be followed to define the following nonlinear equation for the complex eigen-
values

sn = =
inπ
L

√

E(1+β sn)

ρs [α + s]
(24)

(25)

When solving this nonlinear equation, it is necessary to take the square root of
complex numbers. This can be done as follows. If z = reiθ is a complex number,
then

z
1
2 = r

1
2

[

cos(θ
2 )+ isin(

θ
2 )

]

5.2 Dashpot

The dash pot example uses the same mesh and geometry and the proportional damp-
ing example. The two differences in this case are that there is no proportional
damping, and that dashpots are added to the model.

The previous example showed that proportional damping imparted a real com-
ponent on all of the eigenvalues, though higher frequency modes received larger
real components than the lower frequency modes. The dashpots provide a more
nonuniform type of damping, as shown by the results in Figure 2, in that only some
of the modes are affected by the dashpot. Others only receive a very small real com-
ponent in the eigenvalues. This can be explained by examining the mode shapes. It
is seen that some modes do not involve extension along the points connecting the
dashpots, and thus in this case the dashpots do not introduce dissipation into these
modes.

5.3 Coupled Structural Acoustics

In this example, the modes of a coupled structural acoustic system are computed.
The problem consists of a steel bar next to a tube filled with air. The system is
closed at both ends with no physical mechanisms of energy dissipation, and thus
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all of the eigenvalues are imaginary, with no real components. The semidiscrete
equations of motion follow.

[

Ms 0
0 Ma

][

ü
φ̈

]

+

[

Cs L
−LT Ca

][

u̇
φ̇

]

+

[

Ks 0
0 Ka

][

u
φ

]

=

[

0
0

]

.

where subscripts a and s refer to acoustic and solid, respectively, and the matrices
L and LT arise from fluid-structure coupling.

Figure 3 shows the computed spectrum in this case. As expected, the eigenval-
ues are purely imaginary.
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