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Abstract

Verdict is a collection of subroutines for evaluating the geometric qualities of tri-
angles, quadrilaterals, tetrahedra, and hexahedra using a variety of metrics. A metric
is a real number assigned to one of these shapes depending on its particular vertex co-
ordinates. These metrics are used to evaluate the input to finite element, finite volume,
boundary element, and other types of solvers that approximate the solution to partial
differential equations defined over regions of space. The geometric qualities of these
regions is usually strongly tied to the accuracy these solvers are able to obtain in their
approximations.

The subroutines are written in C++ and have a simple C interface. Each metric may
be evaluated individually or in combination. When multiple metrics are evaluated at
once, they share common calculations to lower the cost of the evaluation.
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The Verdict Geometric Quality
Library

1 Introduction

This is Verdict, a library for evaluating the geometric qualities of regions of space. These
regions of space are typically those used as problem domains for partial differential equa-
tions, and are typically partitioned into subregions known as finite elements, finite volumes,
or boundary elements. Subregions are typically simple shapes defined by a few vertices.
The subregion shapes Verdict currently supports include triangles, quadrilaterals, tetrahe-
dra, and hexahedra.

1.1 Measuring Quality with Metrics

Verdict evaluates geometric qualities on a subregion of the partition with metrics. A metric
is a real number that may be assigned to the subregion. Some metrics, which we will call
proper metrics, are normalized so that their values are 1 for ideally-shaped subregions
and their values tend to ∞ for ill-defined, poor quality, or degenerate subregions. Examples
where a proper metric should tend to ∞ include non-planar quadrilaterals, triangles with
edges of vastly different lengths, and subregions with coincident vertices.

1.2 History of Verdict

Verdict has its first roots in the VERDE1 project. VERDE is a simple program to read
Exodus meshes, and analyze them for possible problems. Quality was one of the areas of
analysis that VERDE covers. It was realized that VERDE and CUBIT2 did not yield the same
results when analyzing the geometric qualities of meshes. As a result, Verdict was created
so that both VERDE and CUBIT could share the same code and produce the same results.
Verdict also has roots in the CUBIT project and many other contributors, both theoretical
and practical. Verdict was initially licensed under the LGPL.

Meanwhile, the Visualisation Tool Kit (VTK)3 did not have any support for general pur-
pose mesh quality assessment (with the exception of a method to calculate the tetrahedral
radius ratio, written by Leila Baghdadi, Hanif Ladak, and David Steinman at the Imag-
ing Research Labs, Robarts Research Institute). Due to the need for such a tool, and be-
cause Kitware was unwilling at that time to include LGPL libraries in the VTK repository,

1http://www.cs.sandia.gov/capabilities/VerdeMeshVerificationSuite/index.html
2http://cubit.sandia.gov/
3http://www.vtk.org/
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Philippe Pébay and David Thompson generalized the vtkMeshQuality4 filter in 2004 to
compute one or more measures of geometric quality for each 2-D and 3-D cell (triangle,
quadrilateral, tetrahedron, or hexahedron) of a mesh for a variety of metrics. In addition to
computing per-element qualities, methods to compute their average, minimum, maximum,
and variance over the entire mesh where also added. These descriptive statistics are stored
in the output mesh’s FIELDDATA. This filter allows for further processing and/or visual-
ization of the per-element quality, for instance using ParaView5 as illustrated in Figure 1

Figure 1. Surface (left) and volume (right) renderings with Par-
aView of the per-element base-10 logarithms of the aspect ratios
for two tetrahedral meshes.

Following a change in Verdict’s licensing scheme, from the LGPL to a modified BSD-style
license, it was decided in late 2006 to use Verdict in VTK for the same reasons that Verdict
was initially created, by:

1. moving all metric implementations from vtkMeshQuality to Verdict while retaining
the best implementation when the same metric was implemented in both software
packages;

2. using vtkMeshQuality as a wrapper around Verdict; and

3. resolving naming inconsistencies and redundancies.

It is important to former Verdict users to note that item 3 has resulted in changes to Ver-
dicts API, although efforts have been made to preserve backwards-compatibility as often as
possible; this document underscores these modifications.

4http://www.vtk.org/doc/nightly/html/classvtkMeshQuality.html
5http://www.paraview.org/
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1.3 Organization

After this introduction, the document can be broadly divided into sections covering first
the practical aspects and second the theoretical aspects of geometric quality evaluation. In
these sections:

• Instructions on the practical aspects of obtaining, building, and installing the library
are described.

• Notes on the application programming interface (API) are provided.

• A summary of each metric is provided, sorted first by the shape of the subregion they
deal with and then by name.

The summaries in the last section form the bulk of the document and each contains a math-
ematical description of its quality metric q. In addition to a formula for each metric, in-
formation on the typical, acceptable, and total range of values taken on are presented in
a tabular form according to the conventions outlined below in §1.4. Each summary table
also contains a note on the dimension of its metric – where we use dimension in terms
of the units associated with each metric value. Proper metrics have no dimension (which
is denoted with a 1) but some metrics such as area, volume, or maximum angle do have
dimension. We use L to denote dimensions of length and A to denote dimensions of an-
gle. When a metric has a dimension repeated, an exponent is used to show the count. For
example, volume has 3 length dimensions and would be denoted L3. While the precise
units of length depend on the input coordinates, angles are always reported in degrees.
The summary table also contains an entry for the value that the metric takes on for some
ideally-shaped subregion, when the metric is shape-invariant (unlike, e.g. volume metrics
which are not preserved by scaling). For triangular, quadrilateral, tetrahedral, and hexa-
hedral shapes, this is respectively an equilateral triangle, a square, a regular tetrahedron,
and a cube. For proper metrics, this value will be q = 1. Finally, each summary table has
a reference to a book or paper where its metric is defined and discussed. If no reference
is listed, the metric is one that is traditionally used but not present in the literature we are
aware of.

Where possible, notes on the intended use of the metric are included. Verdict provides
a variety of metrics for each subregion shape it supports. Since a metric is a single real
number, it cannot completely describe the shape of its corresponding subregion. Thus, most
metrics are used to identify a single type of problem with a subregion’s shape. Because
many numerical techniques are used to solve partial differential equations, the best metric
to characterize the geometric quality of a region will vary.
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1.4 Metric Ranges

Each metric may take on any value on the real number line, but typically subsets of this
range are of interest since values for misbehaved or geometrically degenerate elements are
often used to segregate or eliminate elements. The summary tables provided for each metric
include three intervals on the real number line:

Acceptable Range : Well-behaved elements will have metrics in this
range.

Normal Range : All elements except those with degeneracies will
have metrics in this range.

Full Range : All elements including degenerate ones will
have metrics in this range.

1.5 Metric Behavior

The metrics in this report are all checked for overflow like so:
1: Given a double-precision quality metric value q,
2: if q > 0 then
3: q←min(q,DBL MAX)
4: else
5: q←max(q,−DBL MAX)
6: end if

Where applicable, the metrics in Verdict were verified against theory for:

• Node order invariance.

• Continous solutions within the normal range.

12



2 Obtain, Configure, Compile, Install

The Verdict repository now resides at Kitware, Inc. and is publicly available. A formal
release has not yet been made since the repository has been moved and so you will need to
obtain Verdict source code from CVS. If you intend to build VTK, you need not obtain or
compile Verdict separately since it is included with VTK.

2.1 Prerequisites

To build Verdict you will need a C++ compiler. GNU’s gcc 3 or above, Intel’s icc 8 or above,
Apple’s Xcode 2.4 or above, Borland’s bcc 3.2 or 5.5, and Microsoft’s VC 6 or above are
all known to work. Other compilers, including Sun’s CC, DEC’s cxx, IBM’s xlC, HP’s
aCC, and SGI’s CC, are untested but should work. Unless you are using Microsoft’s Visual
Studio compilers, you will also need “make”.

It is not required, but CMake6 version 2.4 or above is highly recommended. At some point
in the future, this will be the only supported configuration system.

2.2 Obtaining Verdict

Fetch the source code from Kitware’s CVS server at www.vtk.org. Kitware provides
anonymous access using CVS pserver. Before you can retrieve the source code, you must
authenticate yourself to the CVS server. From a terminal window, run

cvs -d :pserver:anonymous@www.vtk.org:/cvsroot/VTK login

You will be prompted for a password. Use “vtk” (without the quotes). You may then
retrieve Verdict by running

cvs -d :pserver:anonymous@www.vtk.org:/cvsroot/VTK -z3 \
co -d Verdict VTK/Utilities/verdict

This will place the source code in a subdirectory named Verdict.

If the machine you will use to compile Verdict is behind a firewall, you will probably not
be able to use the commands above to obtain the source code. If you have SSH access to a
computer that is not behind a firewall and SSH port forwarding is not forbidden, you may
port forward CVS requests using a pair of terminal windows. For the purposes of our de-
scription, say that you will build Verdict on a computer named inside.thefirewall.com

6http://www.cmake.org
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(behind the firewall) and have SSH access to a computer named outside.thefirewall.com
(which is not behind the firewall).

In the first terminal window on inside.thefirewall.com, run

ssh -L 2401:www.vtk.org:2401 outside.thefirewall.com

and enter your password as required. Then, while you are still logged into outside.-
thefirewall.com, type the following into a second terminal window on inside.thefirewall.com:

cvs -d :pserver:anonymous@localhost:/cvsroot/VTK login
cvs -d :pserver:anonymous@localhost:/cvsroot/VTK -z3 \

co -d Verdict VTK/Utilities/verdict

After the first command, you’ll have to enter the repository password “vtk”.

2.3 Configuring Verdict

Now that you have the Verdict source in a directory named Verdict, you are ready to
configure it. The recommended way to configure Verdict is to use CMake and perform an
“out-of-source” build (where the object files are not stored in the same directory tree as the
source code). To follow the recommended practice, create a directory named Verdict/Build.
On Mac OS X, Linux, and other Unix-like systems, do the following7:

cd Verdict/Build
ccmake ..

You will be presented with a text interface for changing configuration parameters. If the
defaults are acceptable, press the ‘c’ key until an option to generate project files appears
and then press the ‘g’ key. In practice, there are a few configuration parameters you may
wish to change:

BUILD SHARED LIBRARIES Should a shared or static Verdict library be created?
CMAKE BUILD TYPE This should be Release unless you are developing Ver-

dict, in which case it should be set to Debug.
CMAKE INSTALL PREFIX By default, Verdict will be installed in /usr/local/
VERDICT ENABLE TESTING Should tests of the quality metrics be compiled?

7On Mac OS X, you may wish to use “ccmake -G Xcode ..” in order to create Xcode project files
instead of makefiles.
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You may change them after you have run ccmake’s configuration stage the first time (by
pressing the ‘c’ key).

On Windows machines, run the CMakeSetup.exe program that comes with CMake. Set
the source directory to the full path to the Verdict directory containing the source code
and the build directory to the full path to the Verdict/Build directory you just created.
Click the configure button until the OK button is enabled and then click OK. As with other
systems, you may wish to change some of the configuration parameters in the table above.

If you choose not to use CMake, there is no configuration required or available.

2.4 Building Verdict

On systems where you have used CMake with the “Unix Makefiles” generator (the de-
fault for everything except Windows), just run make in the Verdict/Build directory.
If you used the Xcode generator on Mac OS X, simply open the Xcode project file in
Verdict/Build click Xcode’s build button. If you are on a Windows with MSVC, open
the Visual Studio project file and click the build button.

2.5 Installing Verdict

If you used CMake, you should be able to build the install target. Otherwise, you will
have to manually install Verdict– but this is a simple task since Verdict consists of a single
header file named verdict.h and a single library. On platforms with Makefiles, simply
copy verdict.h to /usr/local/include or any other directory in your compiler’s de-
fault search path. Then copy the file named libverdict112.a, libverdict112.so, or
libverdict112.dylib (depending on your platform) to /usr/local/lib or some other
directory in your link loader’s default search path. On 64-bit Linux systems, you should
use /usr/local/lib64.
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3 Application Programming Interface (API)

Verdict was designed with a C interface so that it can be used in a variety of applications.

Each metric has its own function. For example, the Hex Condition Number metric is:

double v_hex_condition(int num_nodes,
double node_coordiantes[][3])

It may be used as follows:

double coords[8][3];
...
double condition_value = v_hex_condition(8, coords);

The number of nodes is given for each element, and the implementation may be expanded
to include higher order elements.

Each type of element has one function for getting multiple metrics at the same time. The
following is a prototype to get multiple metrics for a hexahedron:

double v_hex_quality(int num_nodes,
double node_coordiantes[][3],
unsigned int request_flag,
struct HexMetricVals *metric_vals)

If one wants multiple metrics for an element, it is usually less computationally expensive
to use this approach because some metrics share the same computations. For example,
computing the Jacobian and shape metrics of a hexahedron both use the Jacobian matrix.
It may be used as follows:

double coords[8][3];
HexMetricVals vals;
double jacobian_value;
double shape_value;
int request = V_HEX_JACOBIAN | V_HEX_SHAPE;
...
v_hex_quality(8, coords, request, &vals);
double jacobian_value = vals.jacobian;
double shape_value = vals.shape;

17
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4 Triangle Quality Metrics

All the metrics in this section are defined on a triangular element as illustrated in Figure 2.

Figure 2. Numbering of vertices and edges on a triangular ele-
ment.

Note that unlike all the other elements that follow, we name edge vectors of the triangle by
the vertex opposite the edge so that

~L0 = ~P2−~P1
~L1 = ~P0−~P2
~L2 = ~P1−~P0.

(1)

The triangle edge lengths are denoted as follows:

L0 =
∥∥~L0
∥∥ L1 =

∥∥~L1
∥∥ L2 =

∥∥~L2
∥∥

and the largest and smallest edge lenghts are, respectively,

Lmin = min(L0,L1,L2) Lmax = max(L0,L1,L2)

The area of a triangle is one half the magnitude of the cross product of any pair of adjacent
edge vectors:

A =
1
2

∥∥~L0×~L1
∥∥=

1
2

∥∥~L1×~L2
∥∥=

1
2

∥∥~L2×~L0
∥∥ (2)

In addition, we will let r be the inradius

r =
2A∥∥~L0

∥∥+
∥∥~L1
∥∥+

∥∥~L2
∥∥ (3)

and R the circumradius

R =

∥∥~L0
∥∥∥∥~L1

∥∥∥∥~L2
∥∥

2r
(∥∥~L0

∥∥+
∥∥~L1
∥∥+

∥∥~L2
∥∥)
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of the triangle. These are respectively the radii of the inscribed and circumscribed circles
of this triangle.

We will frequently use n to represent some arbitrary edge Ln or vertex Pn of the triangle.
When referring to the next counterclockwise entry n+1 (or clockwise entry n−1), we take
the result modulo 3 so that, for example, if n = 1, n+1 = 2 and n+2 = 0.
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4.1 Area

This metric is simply the area as defined above

q = A.

Note that since A is non-negative, the current version of Verdict cannot detect inverted
triangles. What are you doing with inverted triangles, anyway? There’s only 3 vertices to
keep track of!

triangle area
Dimension: L2

Acceptable Range: [0,DBL MAX ]
Normal Range: [0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for equilateral unit triangle:

√
3

4
Reference: –
Verdict function: v tri area
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4.2 Aspect Ratio

The aspect ratio of a triangle is:

q =
Lmax

2
√

3r
.

Using (3), one can thus write it alternatively as

q =
Lmax(L0 +L1 +L2)

4
√

3A
. (4)

Note that in earlier versions of Verdict, triangle aspect ratio was used to call out what is
now called the triangle aspect.

triangle aspect ratio
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for equilateral unit triangle: 1
Reference: [9]
Verdict function: v tri aspect ratio
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4.3 Aspect Frobenius

The aspect Frobenius is the sum of the edge lengths squared divided by the area and nor-
malized so that a unit equilateral triangle has a value of 1.

q =

∥∥~L0
∥∥2

+
∥∥~L1
∥∥2

+
∥∥~L2
∥∥2

4A
√

3

Note that in earlier versions of Verdict, this metric was called the triangle aspect ratio.

triangle aspect Frobenius
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for equilateral unit triangle: 1
Reference: [9]
Verdict function: v tri aspect frobenius
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4.4 Condition

The condition number of the weighted Jacobian matrix is

q =

(
~L2 ·~L2 +~L1 ·~L1 +~L1 ·~L2

)
2A
√

3
.

Note that when A = 0, we set q = DBL MAX . In theory the condition number is invari-
ant to which node it is computed at, but floating point truncation error can contribute to
differences between values computed for each node. Verdict always uses the first vertex.

triangle condition
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for equilateral unit triangle: 1
Reference: [5, 6]
Verdict function: v tri condition
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4.5 Distortion

Let A be the area as defined in §4.1 and Am =
√

3 be the area of a “master” triangle with
vertices

~P0 = ( −1 , −
√

3
3 , 0 )

~P1 = ( 1 , −
√

3
3 , 0 )

~P2 = ( 0 , 2
√

3
3 , 0 ).

Now define |J| as the minimum value of the determinant of the Jacobian evaluated at all
Gauss points of the element. The distortion is then

q =
|J|Am

A
=
|J|
√

3
A

.

Distortion is a measure of how well-behaved the mapping from parameter space to world
coordinates is.

Note that this metric is currently unsupported.

triangle distortion
Dimension: 1
Acceptable Range: [0.5,1]
Normal Range: [0,1]
Full Range: [−DBL MAX ,DBL MAX ]
q for equilateral unit triangle: 1
Reference: Adapted from [11]
Verdict function: v tri distortion
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4.6 Edge Ratio

The edge ratio of a triangle is:
Lmax

Lmin
.

triangle edge ratio
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for equilateral unit triangle: 1
Reference: [9]
Verdict function: v tri edge ratio
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4.7 Maximum Angle

The maximum included angle of the triangle is

q = max
n∈{0,1,2}

{
arccos

(
~Ln ·~Ln+1∥∥~Ln
∥∥∥∥~Ln+1

∥∥
)(

180◦

π

)}

measured in degrees.

Note that if any edge vector has zero length, Verdict will return q = 0◦.

triangle maximum included angle
Dimension: A1

Acceptable Range: [60◦,90◦]
Normal Range: [60◦,180◦]
Full Range: [0◦,180◦]
q for equilateral unit triangle: 60◦

Reference: –
Verdict function: v tri maximum angle

27



4.8 Minimum Angle

The minimum included angle of the triangle is

q = min
n∈{0,1,2}

{
arccos

(
~Ln ·~Ln+1∥∥~Ln
∥∥∥∥~Ln+1

∥∥
)(

180◦

π

)}

measured in degrees.

Note that if any edge vector has zero length, Verdict will return q = 360◦.

triangle minimum included angle
Dimension: A1

Acceptable Range: [30◦,60◦]
Normal Range: [0◦,60◦]
Full Range: [0◦,360◦]
q for equilateral unit triangle: 60◦

Reference: [9]
Verdict function: v tri minimum angle
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4.9 Scaled Jacobian

First, let Lmax be the product of the lengths of the 2 longest edges:

Lmax = max
{∥∥~L0

∥∥∥∥~L1
∥∥,∥∥~L0

∥∥∥∥~L2
∥∥,∥∥~L1

∥∥∥∥~L2
∥∥}

Let J′ be the Jacobian of the triangle. If the triangle surface normal n̂ is evaluated at the
center of the triangle and n̂ ·

(
~L2×~L1

)
< 0, then take J =−J′. Otherwise take J = J′. The

scaled Jacobian is then

q =
2
√

3
3

J
Lmax

which is normalized so that a unit equilateral triangle has value 1.

Note that if Lmax ≤ DBL MIN, we set q = 0.

triangle scaled Jacobian
Dimension: 1
Acceptable Range: [0.5, 2

√
3

3 ]
Normal Range: [−2

√
3

3 , 2
√

3
3 ]

Full Range: [−DBL MAX ,DBL MAX ]
q for equilateral unit triangle: 1
Reference: [5]
Verdict function: v tri scaled jacobian
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4.10 Radius Ratio

The radius ratio is:
R
2r

.

triangle radius ratio
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for equilateral unit triangle: 1
Reference: [9]
Verdict function: v tri radius ratio
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4.11 Relative Size Squared

Let R be ratio of the triangle area A to the average area A of an ensemble of triangles

R =
A
A

The relative size is the minimum of R and its inverse and the relative size squared is

q =
(

min
{

R,
1
R

})2

.

Note that if R = 0, we take q = 0.

triangle relative size squared
Dimension: 1
Acceptable Range: [0.25,1]
Normal Range: [0,1]
Full Range: [0,1]
q for equilateral unit triangle: Dependent on A
Reference: [6]
Verdict function: v tri relative size squared
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4.12 Shape

Let C be the condition number as defined in §4.4. Then the shape metric is simply

q =
1
C

triangle relative size squared
Dimension: 1
Acceptable Range: [0.25,1]
Normal Range: [0,1]
Full Range: [0,1]
q for equilateral unit triangle: 1
Reference: [6]
Verdict function: v tri shape
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4.13 Shape and Size

Let R be the relative size squared as defined in §4.11 and S be the shape as defined in §4.12.
Then the “shape and size” metric is

q = RS

triangle shape and size
Dimension: 1
Acceptable Range: [0.25,1]
Normal Range: [0,1]
Full Range: [0,1]
q for equilateral unit triangle: Dependent on A
Reference: [6]
Verdict function: v tri shape and size
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5 Quadrilateral Quality Metrics

All the metrics in this section are defined on a quadrilateral element with vertices shown
in Figure 3. Furthermore, we define the following edge vectors for convenience. Note that
each edge has two versions, one defined by its endpoints and another indexed by sequential
integers:

~L0 = ~P1−~P0
~L1 = ~P2−~P1
~L2 = ~P3−~P2
~L3 = ~P0−~P3

~L01 = ~P1−~P0
~L12 = ~P2−~P1
~L23 = ~P3−~P2
~L30 = ~P0−~P3.

(5)

The quadrangle edge lengths are denoted as follows:

L0 =
∥∥~L0
∥∥ L1 =

∥∥~L1
∥∥ L2 =

∥∥~L2
∥∥ L3 =

∥∥~L3
∥∥

and the largest and smallest edge lenghts are, respectively,

Lmin = min(L0,L1,L2,L3) Lmax = max(L0,L1,L2,L3)

The diagonals of a quadrilateral are denoted

~D0 = ~P2−~P0 ~D1 = ~P3−~P1 (6)

and the longest diagonal has length

Dmax = max
{∥∥~D0

∥∥,∥∥~D1
∥∥} .

(a) Vertices of a quadrilateral. (b) Principal axis vectors.

Figure 3. A quadrilateral showing notation used in metric defini-
tions.

The principal axes are
~X1 =

(
~P1−~P0

)
+
(
~P2−~P3

)
~X2 =

(
~P2−~P1

)
+
(
~P3−~P0

) (7)
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and the cross derivatives of the map from parametric to world space are oriented along

~X12 =
(
~P0−~P1

)
+
(
~P2−~P3

)
=

~X21 =
(
~P0−~P3

)
+
(
~P2−~P1

)
.

(8)

Each corner has a normal vector associated with it
~N0 = ~L3×~L0
~N1 = ~L0×~L1

~N2 = ~L1×~L2
~N3 = ~L2×~L3

(9)

and these vectors can be normalized to unit length:

n̂0 =
~N0∥∥~N0
∥∥

n̂1 =
~N1∥∥~N1
∥∥

n̂2 =
~N2∥∥~N2
∥∥

n̂3 =
~N3∥∥~N3
∥∥ .

(10)

In addition to corner normals, we can define a “center” normal
~Nc = ~X1×~X2 (11)

and its unit-length companion

n̂c =
~Nc∥∥~Nc
∥∥ (12)

In the event that the vertices of the quadrilateral are all contained in the same plane, all the
unit normals will be equivalent (i.e., n̂0 = n̂1 = n̂2 = n̂3 = n̂c).

Figure 4. Areas associated with each quadrilateral vertex.

It is often useful to partition the quadrilateral into four areas, one associated with each
vertex. These areas are denoted

αk = n̂c ·~Nk ∀k ∈ {0,1,2,3} (13)

and are shown in Figure 4. If ~Nc =~0, then the signed corner areas are undefined, and all
the metrics which depend on αk are undefined. In this case, we set αk = 0 for k = 0,1,2,3.
When αk ≤ 0 for any one or more k, the quadrilateral is degenerate. This occurs when an
element is so small its edge length approach the machine epsilon or when its vertices are
collinear or when its vertices define a concave quadrilateral.
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5.1 Area

Signed area, defined as

q =
1
4

3

∑
i=0

αi

is useful for two purposes: first, the sign can indicate elements that have vertices ordered
incorrectly or arranged in a concave pattern; and second, the magnitude can be used to
identify elements that are too small for accurate analysis. Figure 5 shows how each vertex
area contributes to the total area of a quadrilateral.

Figure 5. The areas associated with each vertex may be summed
and weighted to get the area of the entire quadrilateral.

quadrilateral area
Dimension: L2

Acceptable Range: [0,DBL MAX ]
Normal Range: [0,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit square: 1
Reference: –
Verdict function: v quad area
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5.2 Aspect Ratio

The aspect ratio of a quadrilateral is:

q =
Lmax(L0 +L1 +L2 +L3)

4A
,

where A is the area of the quadrilateral.

Note that, strictly speaking, the aspect ratio is usually defined for simplicial elements as
the ratio of the maximum edge length to the inradius (cf. §4.2 and §??). However, a planar
quadrilateral does not have, in general, an inscribed circle: such an incircle exists if and
only if L0 + L2 = L1 + L3. Nonetheless, using the expression of the triangle aspect ratio
as given in (4), that is, with no explicit reference to the inradius but only to the perimeter
and the area, one can then directly extrapolate to obtain a meaningful definition of the
quadrangle aspect ratio.

triangle aspect ratio
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for equilateral unit triangle: 1
Reference: [8]
Verdict function: v quad aspect ratio
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5.3 Condition

q =
1
2

max

{∥∥~L0
∥∥2 +

∥∥~L3
∥∥2

α0
,

∥∥~L1
∥∥2 +

∥∥~L0
∥∥2

α1
,

∥∥~L2
∥∥2 +

∥∥~L1
∥∥2

α2
,

∥∥~L3
∥∥2 +

∥∥~L2
∥∥2

α3

}

Note that if αi < DBL MIN, we set q = DBL MAX .

quadrilateral condition
Dimension: 1
Acceptable Range: [1,4]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit square: 1
Reference: [5]
Verdict function: v quad condition
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5.4 Distortion

Let A be the area as defined in §5.1 and Am = 4 be the area of a “master” quadrilateral with
vertices

~P0 = ( −1 , −1 , 0 )
~P1 = ( 1 , −1 , 0 )
~P2 = ( 1 , 1 , 0 )
~P3 = ( −1 , 1 , 0 ).

Now define |J| as the minimum value of the determinant of the Jacobian evaluated at all
Gauss points of the element. The distortion is then

q =
|J|Am

A
=

4|J|
A

.

Distortion is a measure of how well-behaved the mapping from parameter space to world
coordinates is.

quadrilateral distortion
Dimension: 1
Acceptable Range: [0.5,1]
Normal Range: [0,1]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit square: 1
Reference: [11]
Verdict function: v quad distortion
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5.5 Edge Ratio

The edge ratio of a quadrilateral is the ratio of its longest and shortest edge lengths:

q =
Lmax

Lmin
.

quadrilateral edge ratio
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit square: 1
Reference: [8]
Verdict function: v quad edge ratio
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5.6 Jacobian

The minimum Jacobian computed at each vertex is used:

q = min
i∈{0,1,2,3}

{αi}

quadrilateral Jacobian
Dimension: L2

Acceptable Range: [0.DBL MAX ]
Normal Range: [0,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit square: 1
Reference: [5]
Verdict function: v quad jacobian
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5.7 Maximum Aspect Frobenius

For quadrilaterals, there is not a unique definition of the aspect Frobenius. Instead, we use
the aspect Frobenius defined for triangles (see section §4.3). Consider the four triangles
formed by pairs of neighboring quadrilateral edges. Given three counterclockwise, consec-
utively ordered quadrilateral vertices i, j, and k denote the triangular aspect frobenius Fi jk.
To obtain a single value for the metric, we take the maximum of the four unique triangular
aspects

q = max(F301,F012,F123,F230) .

quadrilateral maximum aspect frobenius
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit square: 1
Reference: [8]
Verdict function: v quad max aspect frobenius
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5.8 Maximum Angle

In order to properly compute the included angle, we’ll need to correct for incorrectly ori-
ented elements. Let

si =
{

1 αi < 0
0 αi ≥ 0

The included angle between two neighboring edges is

θi = (−1)si arccos

(
−

~Li ·~Li+1∥∥~Li
∥∥∥∥~Li+1

∥∥
)(

180
π

)
+360◦si

where i ∈ {0,1,2,3} and ~L4 =~L0. We take the maximum of this quantity as the value of
the metric:

q = max
i∈{0,1,2,3}

{θi}

Note that if
∥∥~Li
∥∥≤ DBL MIN or

∥∥~Li+1
∥∥≤ DBL MIN, Verdict returns q = 0◦.

quadrilateral maximum included angle
Dimension: A1

Acceptable Range: [90◦,135◦]
Normal Range: [90◦,360◦]
Full Range: [0◦,360◦]
q for unit square: 90◦

Reference: –
Verdict function: v quad maximum angle
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5.9 Maximum Edge Ratio

q = max
{∥∥~X1

∥∥/∥∥~X2
∥∥,∥∥~X2

∥∥/∥∥~X1
∥∥}

Note that if
∥∥~X1
∥∥ or

∥∥~X2
∥∥< DBL MIN, we set q = DBL MAX .

quadrilateral maximum edge ratio
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit square: 1
Reference: [10]
Verdict function: v quad max edge ratio
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5.10 Mean Aspect Frobenius

For quadrilaterals, there is not a unique definition of the aspect Frobenius. Instead, we use
the aspect Frobenius defined for triangles (see section §4.3). Consider the four triangles
formed by pairs of neighboring quadrilateral edges. Given three counterclockwise, consec-
utively ordered quadrilateral vertices i, j, and k denote the triangular aspect frobenius Fi jk.
To obtain a single value for the metric, we average the four unique triangular aspects

q =
1
4

(F301 +F012 +F123 +F230) .

quadrilateral mean aspect frobenius
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit square: 1
Reference: [8]
Verdict function: v quad med aspect frobenius

46



5.11 Minimum Angle

In order to properly compute the included angle, we’ll need to correct for incorrectly ori-
ented elements. Let

si =
{

1 αi < 0
0 αi ≥ 0

The included angle between two neighboring edges is

θi = (−1)si arccos

(
−

~Li ·~Li+1∥∥~Li
∥∥∥∥~Li+1

∥∥
)(

180
π

)
+360◦si

where i ∈ {0,1,2,3} and~L4 =~L0. We take the minimum of this quantity as the value of the
metric:

q = min
i∈{0,1,2,3}

{θi}

Note that if
∥∥~Li
∥∥≤ DBL MIN or

∥∥~Li+1
∥∥≤ DBL MIN, Verdict returns q = 360◦.

quadrilateral minimum included angle
Dimension: A1

Acceptable Range: [45◦,90◦]
Normal Range: [0◦,90◦]
Full Range: [0◦,360◦]
q for unit square: 90◦

Reference: –
Verdict function: v quad minimum angle
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5.12 Oddy

Let~L4 =~L0. The Oddy metric is then defined as

q = max
i∈{0,1,2,3}

{
(
∥∥~Li
∥∥2−

∥∥~Li+1
∥∥2)2 +4(~Li ·~Li+1)2

2
∥∥~Ni+1

∥∥2

}
.

This metric measures the maximum deviation of the metric tensor at the corners of the
quadrilateral.

Note that if
∥∥~Ni+1

∥∥2
< DBL MIN, we set q = DBL MAX .

quadrilateral Oddy
Dimension: 1
Acceptable Range: [0,0.5]
Normal Range: [0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for unit square: 0
Reference: [7]
Verdict function: v quad oddy
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5.13 Radius Ratio

Let hmax be the maximum length of all edges and diagonals

hmax = max(Lmax,Dmax)

and L2 be the sum of the squares of all edge lengths

L2 =
3

∑
i=0

∥∥~Li
∥∥2

and Ai be the area of one of the 4 triangles formed by pairs of quadrilateral neighboring
edges

Ai =
∣∣∣αi

2

∣∣∣ .
Then the radius ratio of a planar quadrilateral is

q =
L2hmax

mini∈{0,1,2,3}Ai
.

quadrilateral radius ratio
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit square: 1
Reference: [8]
Verdict function: v quad radius ratio
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5.14 Relative Size Squared

The relative size squared metric is defined as

q =
(

min
{

A
A

,
A
A

})2

where A is the area of the element as defined in §5.1 and A is the average of A over all of
the elements in the ensemble of elements being considered. It is the square of the minimum
of the ratio of quad area to the average quad area and its inverse.

Note that if A < DBL MIN or A < DBL MIN, we take q = 0.

quadrilateral relative size squared
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit square: Dependent on A
Reference: [6]
Verdict function: v quad relative size squared
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5.15 Scaled Jacobian

The scaled Jacobian is the minimum of the Jacobian at each corner divided by the lengths
of the 2 edge vectors (which is the minimum sine of the included angles):

q = min

{
α0∥∥~L0
∥∥∥∥~L3

∥∥ ,
α1∥∥~L1
∥∥∥∥~L0

∥∥ ,
α2∥∥~L2
∥∥∥∥~L1

∥∥ ,
α3∥∥~L3
∥∥∥∥~L2

∥∥
}

.

Note that if any edge has L < DBL MIN, we take q = 0.

quadrilateral scaled Jacobian
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [−1,1]
Full Range: [−1,1]
q for unit square: 1
Reference: [5]
Verdict function: v quad scaled jacobian
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5.16 Shape

The shape metric is 2 divided by the condition number of the Jacobian matrix:

q = 2min

{
α0∥∥~L0

∥∥2 +
∥∥~L3
∥∥2 ,

α1∥∥~L1
∥∥2 +

∥∥~L0
∥∥2 ,

α2∥∥~L2
∥∥2 +

∥∥~L1
∥∥2 ,

α3∥∥~L3
∥∥2 +

∥∥~L2
∥∥2

}
.

Note that if αi < DBL MIN or any edge has length L < DBL MIN, we set q = 0.

quadrilateral shape
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit square: 1
Reference: [6]
Verdict function: v quad shape
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5.17 Shape and Size

Let R be the relative size squared as defined in §5.14 and S be the shape as defined in §5.16.
The shape and size metric is the product of these two numbers:

q = RS.

quadrilateral shape and size
Dimension: 1
Acceptable Range: [0.2,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit square: Dependent on A
Reference: [6]
Verdict function: v quad shape and size
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5.18 Shear

The shear metric

q = min

{
α0∥∥~L0
∥∥∥∥~L3

∥∥ ,
α1∥∥~L1
∥∥∥∥~L0

∥∥ ,
α2∥∥~L2
∥∥∥∥~L1

∥∥ ,
α3∥∥~L3
∥∥∥∥~L2

∥∥
}

is the same as the scaled Jacobian, except that it has a truncated range.

Note that if αi < DBL MIN or any edge has length L < DBL MIN, we set q = 0.

quadrilateral shear
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit square: 1
Reference: [6]
Verdict function: v quad shear
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5.19 Shear and Size

Let R be the relative size squared as defined in §5.14 and H be the shear as defined in §5.18.
The shear and size metric is the product of these two numbers:

q = RH

quadrilateral shear and size
Dimension: 1
Acceptable Range: [0.2,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit square: Dependent on A
Reference: [6]
Verdict function: v quad shear and size
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5.20 Skew

First define normalized principal axes

X̂1 = ~X1∥∥~X1

∥∥
X̂2 = ~X2∥∥~X2

∥∥ .

The skew is then
q = |X̂1 · X̂2|.

A geometric intepretation of the skew is that it measures the angle between the principal
axes. In fact, it is the absolute value of the cosine of the angle between the principal axes.

Note that if
∥∥~X1
∥∥ or

∥∥~X2
∥∥< DBL MIN, we set q = 0.

quadrilateral skew
Dimension: 1
Acceptable Range: [0.5,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit square: 1
Reference: Adapted from [10]
Verdict function: v quad skew
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5.21 Stretch

The stretch is

q =

√
2mini∈{0,1,2,3} {Li}

Dmax

Note that if Dmax < DBL MIN, we take q = DBL MAX .

quadrilateral stretch
Dimension: 1
Acceptable Range: [0.25,1]
Normal Range: [0,1]
Full Range: [0,DBL MAX ]
q for unit square: 1
Reference: [3]
Verdict function: v quad stretch
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5.22 Taper

Taper is the maximum ratio of cross derivative magnitude to principal axis magnitude:

q =

∥∥~X12
∥∥

min
{∥∥~X1

∥∥,∥∥~X2
∥∥}

Note that if
∥∥~X1
∥∥ or

∥∥~X2
∥∥< DBL MIN, we set q = DBL MAX .

quadrilateral taper
Dimension: 1
Acceptable Range: [0,0.7]
Normal Range: [0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for unit square: 0
Reference: Adapted from [10]
Verdict function: v quad taper
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5.23 Warpage

Warpage is defined as
q = 1−min

{
(n̂0 · n̂2)

3 ,(n̂1 · n̂3)
3
}

which is the cosine of the minimum dihedral angle formed by planes intersecting in diago-
nals (to the fourth power).

Note that if
∥∥~Nk

∥∥< DBL MIN for any k, we set q = DBL MAX .

quadrilateral warpage
Dimension: 1
Acceptable Range: [0,0.7]
Normal Range: [0,2]
Full Range: [0,DBL MAX ]
q for unit square: 0
Reference: –
Verdict function: v quad warpage
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6 Tetrahedral Quality Metrics

All the metrics in this section are defined on a tetrahedral element with vertices shown in
Figure 6. Furthermore, we define the following edge vectors for convenience

~L0 = ~P1−~P0
~L1 = ~P2−~P1
~L2 = ~P0−~P2

~L3 = ~P3−~P0
~L4 = ~P3−~P1
~L5 = ~P3−~P2

. (14)

Figure 6. Vertices of a tetrahedron.

The tetrahedron edge lengths are denoted as follows:

L0 =
∥∥~L0
∥∥ L1 =

∥∥~L1
∥∥ L2 =

∥∥~L2
∥∥ L3 =

∥∥~L3
∥∥ L4 =

∥∥~L4
∥∥ L5 =

∥∥~L5
∥∥

and the largest and smallest edge lenghts are, respectively,

Lmin = min(L0,L1,L2,L3,L4,L5) Lmax = max(L0,L1,L2,L3,L4,L5)

The volume can then be defined in terms of the edge vectors as

V =

(
~L2×~L0

)
·~L3

6
. (15)

In addition, we will respectively denote R and r the circumradius and the inradius of the
tetrahedron, i.e., respectively, the radii of the circumscribed and inscribed spheres of this
tetrahedron. Note that the inradius is

r =
3V
A

where A is the surface area of the tetrahedron:

A =
1
2

(∥∥~L2×~L0
∥∥+

∥∥~L3×~L0
∥∥+

∥∥~L4×~L1
∥∥+

∥∥~L3×~L2
∥∥) ,
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and that the the circumradius is

R =

∥∥∥∥∥~L3
∥∥2
(
~L2×~L0

)
+
∥∥~L2
∥∥2
(
~L3×~L0

)
+
∥∥~L0
∥∥2
(
~L3×~L2

)∥∥∥
12V

.

Sometimes, we will to refer to the edge vectors indexed by their endpoints:

~L01 = ~L0
~L12 = ~L1
~L20 = ~L2

~L03 = ~L3
~L13 = ~L4
~L23 = ~L5

(16)
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6.1 Edge Ratio

The edge ratio of a tetrahedron is:
Lmax

Lmin
.

tetrahedral edge ratio
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: –
Verdict function: v tet edge ratio
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6.2 Aspect Delta

Aspect δ is a dimensionless number defined as the smallest ratio of the height of a vertex
above its opposing triangle (see Figure 7) to the square root of the area the triangle across
all vertices of the tetrahedron. In general, take (i, j,k, `) to be a permutation of {0,1,2,3}

Figure 7. An illustration of the height h3 of vertex 3.

(i.e., (i, j,k, `) ∈ S4) and
∥∥~Lab

∥∥ to be the length of the edge connecting vertices a and b.
Then aspect ratio δ may be written

q = min
i

{
C

hi√
A jk`

}

where A jk` is the area of the triangle opposite vertex i and C =
4√108

4 ≈ 0.805927 chosen
so that an equilateral tetrahedron has q = 1. PATRAN [1] also speaks of a “normalized”
aspect ratio defined as

qalt = 1−q = 1−min
i

{
C

hi√
A jk`

}
which is 0 for an equilateral tetrahedron.

tetrahedral aspect δ
Dimension: 1
Acceptable Range: [0.1,DBL MAX ]
Normal Range: (0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: [1]
Verdict function: Not supported
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6.3 Aspect Frobenius

The edge matrix of the tetrahedral element is defined as follows:

T0 = (~L0 ~L1 ~L2)

and let W be the edge matrix of the reference regular tetrahedron. Consider the matrix that
maps W into T0:

A0 = T0W−1.

The Frobenius norm of A0 is

|A0|F =
√

tr(AT
0 A0),

and the Frobenius condition number is the condition number associated with this norm.

The aspect Frobenius of the element is defined as the normalized (equal to 1 when the
element is regular) Frobenius condition number of A0.

tetrahedral aspect Frobenius
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: [5]
Verdict function: v tet aspect frobenius

65



6.4 Aspect Gamma

This metric compares root-mean-square edge length to volume. The root-mean-square edge
length is

R =

√
∑

5
i=0

∥∥~Li
∥∥2

6
and so, normalizing the metric to a value of 1 for equilateral tetrahedra, we have

q =
R3
√

2
12|V |

.

Note that if |V |< DBL MIN, we set q = DBL MAX .

tetrahedral aspect γ
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: [2]
Verdict function: v tet aspect gamma

66



6.5 Aspect Ratio

The aspect ratio of a tetrahedron K is:

Lmax

2
√

6r
.

tetrahedral aspect ratio
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: [4]
Verdict function: v tet aspect ratio
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6.6 Collapse Ratio

The collapse ratio is a dimensionless number defined as the smallest ratio of the height of
a vertex above its opposing triangle to the longest edge of that opposing triangle across all
vertices of the tetrahedron. Figure 7 shows how the ratio is computed for a single vertex
(vertex 3). Assuming that edge 0−2 is the longest edge of triangle 0−1−2, the collapse
ratio for vertex 3 becomes:

qex =
h3∥∥~L02
∥∥ .

In general, take (i, j,k, `) to be a permutation of {0,1,2,3} (i.e., (i, j,k, `) ∈S4) and
∥∥~Lab

∥∥
to be the length of the edge connecting vertices a and b. Then the collapse ratio may be
written

q = min
i

 hi

max
{∥∥~L jk

∥∥,∥∥~Lk`
∥∥,∥∥~L` j

∥∥}
 .

The collapse ratio is intended to identify tetrahedra whose vertices are nearly planar (sliv-
ers). Note that q approaches zero as vertex 3 in Figure 7 approaches the plane defined by
0− 1− 2. However, this metric can be misleading when the vertex with the smallest pro-
jected height (say 3 without loss of generality) is not projected interior to triangle 0−1−2.
In this case, it is possible for 0−1−2 to have a small area (which increases q) but for edges
0−3, 1−3, and 2−3 to be very long compared to those of triangle 0−1−2. Thus slivers
can have arbitrarily high collapse ratios.

tetrahedral collapse ratio
Dimension: 1
Acceptable Range: [0.1,DBL MAX ]
Normal Range: (0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for unit equilateral tetrahedron:

√
6

3
Reference: [1]
Verdict function: v tet collapse ratio
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6.7 Condition

First, define
~C1 = ~L0
~C2 =

(
−2~L2−~L0

)
/
√

3

~C3 =
(

3~L3 +~L2−~L0

)
/
√

6

Cdet = ~C1 · (~C2×~C3),

and

T1 = ~C1 ·~C1 +~C2 ·~C2 +~C3 ·~C3

T2 = (~C1×~C2) · (~C1×~C2)+(~C2×~C3) · (~C2×~C3)+(~C1×~C3) · (~C1×~C3)

The condition metric is then defined as follows:

q =
√

T1T2

3Cdet
. (17)

Note that if If Cdet ≤ DBL MIN, we set q = DBL MAX .

tetrahedral condition
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: [5]
Verdict function: v tet condition
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6.8 Distortion

The distortion is a measure of how well-behaved the mapping from parameter space to
world coordinates is. The parameter space is defined using a “master” tetrahedron with
vertices

~P0 = ( −1 , −
√

3
3 , −2

√
6

9 )
~P1 = ( 1 , −

√
3

3 , −2
√

6
9 )

~P2 = ( 0 , 2
√

3
3 , −2

√
6

9 )
~P3 = ( 0 , 0 , 4

√
6

9 )

and volume Vm. The behavior of the map is measured by sampling the determinant of the
Jacobian at Gauss points G = {gk}. The minimum of these is then used to scale the ratio
of the “master” tetrahedron to the tetrahedron of interest:

q =
mink{det(Jgk)}Vm

V

Note that if V < DBL MIN, we set q = DBL MAX . This metric is currently unsupported.

tetrahedral distortion
Dimension: 1
Acceptable Range: [0.5,1]
Normal Range: [0,1]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit equilateral tetrahedron: 0
Reference: Adapted from [11]
Verdict function: v tet distortion
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6.9 Jacobian

This metric is defined as follows:

q =
(
~L2×~L0

)
·~L3

tetrahedral Jacobian
Dimension: L3

Acceptable Range: [0,DBL MAX ]
Normal Range: [0,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit equilateral tetrahedron:

√
2

2
Reference: [6]
Verdict function: v tet jacobian
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6.10 Minimum Angle

The (nonoriented) dihedral angle of two faces of the tetrahedron that are adjacent along
edge i (0≤ i≤ 5), is, measured in degrees,

αi =
180◦

π
arccos(~ni1 · ~ni2),

where ~ni1 and ~ni2 are unit vectors normal to the two tetrahedron faces that are adjacent
to edge i. Subsequently, the minimum (nonoriented) dihedral angle of the tetrahedron,
measured in degrees, is

q = min
i∈{0,1,2,3,4,5}

αi.

tetrahedral minimum dihedral angle
Dimension: A1

Acceptable Range: [40◦, 180◦
π

arccos 1
3 ]

Normal Range: [0◦, 180◦
π

arccos 1
3 ]

Full Range: [0◦,360◦]
q for unit equilateral tetrahedron: 180◦

π
arccos 1

3 ≈ 70.528779◦

Reference: –
Verdict function: v tet minimum angle
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6.11 Radius Ratio

This measure is commonly known as the radius ratio since it is the normalized ratio of the
radius of the inscribed sphere to the radius of the circumsphere. In previous versions of
Verdict, it was named “Aspect Ratio Beta”. Note that backwards-compatibility has been
preserved, but that “Aspect Ratio Beta” will eventually be deprecated.

The radius ratio is quotient of these two radii normalized by 1
3 so that an equilateral tetra-

hedron has quality of 1:

q =
R
3r

=

∣∣∣∥∥~L3
∥∥2
(
~L2×~L0

)
+
∥∥~L2
∥∥2
(
~L3×~L0

)
+
∥∥~L0
∥∥2
(
~L3×~L2

)∣∣∣A
108V 2 (18)

Note that if |V |< DBL MIN, we set q = DBL MAX .

tetrahedral radius ratio
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: [2]
Verdict function: v tet radius ratio or v tet aspect beta∗

∗ indicates a function that is deprecated and may be removed in future versions of Verdict.
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6.12 Relative Size Squared

This metric measures the size of a tetrahedron relative to an ensemble containing it using
volume. Take V to be the average volume of the tetrahedra in the ensemble being analyzed
and define

R =
V
V

Then the quality is defined as

q =
[

min
(

R,
1
R

)]2

. (19)

Note that if V < DBL MIN or if R≤ DBL MIN, we set q = 0.

tetrahedral relative size squared
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit equilateral tetrahedron: N/A
Reference: [6]
Verdict function: v tet relative size squared
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6.13 Scaled Jacobian

Let J be the Jacobian as defined in §6.9

λ1 =
∥∥~L0
∥∥∥∥~L2

∥∥∥∥~L3
∥∥

λ2 =
∥∥~L0
∥∥∥∥~L1

∥∥∥∥~L4
∥∥

λ3 =
∥∥~L1
∥∥∥∥~L2

∥∥∥∥~L5
∥∥

λ4 =
∥∥~L3
∥∥∥∥~L4

∥∥∥∥~L5
∥∥

λmax = max{λ1,λ2,λ3,λ4,J}

q =
J
√

2
λmax

(20)

Note that if λmax < DBL MIN, we set q = DBL MAX .

tetrahedral scaled Jacobian
Dimension: 1
Acceptable Range: [1

2 ,
√

2
2 ]

Normal Range: [−
√

2
2 ,
√

2
2 ]

Full Range: [−DBL MAX ,DBL MAX ]
q for unit equilateral tetrahedron: 1
Reference: [5]
Verdict function: v tet scaled jacobian
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6.14 Shape

Let J be the Jacobian as defined in §6.9. We define the shape quality metric as

q =
3
(

J
√

2
)2/3

3
2

(
~L0 ·~L0 +~L2 ·~L2 +~L3 ·~L3

)
−
(
~L0 ·−~L2 +~L0 ·~L3 +−~L2 ·~L3

) (21)

Note that if J < DBL MIN, q = 0. If 3
2

(
~L0 ·~L0 +~L2 ·~L2 +~L3 ·~L3

)
−
(
~L0 ·−~L2 +~L0 ·~L3 +−~L2 ·~L3

)
<

DBL MIN, we set q = 0.

tetrahedral shape
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit equilateral tetrahedron: 1
Reference: [6]
Verdict function: v tet shape
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6.15 Shape and Size

Let S be the shape as defined in §6.14 and R be the relative size squared as defined in §6.12.
Then the shape and size metric is

q = SR

tetrahedral shape and size
Dimension: 1
Acceptable Range: [0.2,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit equilateral tetrahedron: Dependent on V
Reference: [6]
Verdict function: v tet shape and size
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6.16 Volume

The tetrahedron volume metric is simply

q = V.

tetrahedral volume
Dimension: L3

Acceptable Range: [0,DBL MAX ]
Normal Range: [−DBL MAX ,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit equilateral tetrahedron:

√
2

12
Reference: [2]
Verdict function: v tet volume
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7 Hexahedral Quality Metrics

All the metrics in this section are defined on a hexahedral element as shown in Figure 8.
Unless noted otherwise, hexahedra are assumed to have planar faces.

Figure 8. A prototypical hexahedral finite element.

We index the edges as follows. Note that order of the edges does not match VTK.

~L0 = ~P1−~P0
~L1 = ~P2−~P1
~L2 = ~P3−~P2
~L3 = ~P3−~P0

~L4 = ~P4−~P0
~L5 = ~P5−~P1
~L6 = ~P6−~P2
~L7 = ~P7−~P3

~L8 = ~P5−~P4
~L9 = ~P6−~P5
~L10 = ~P7−~P6
~L11 = ~P7−~P4

(22)

The tetrahedron edge lengths are denoted as follows:

L0 =
∥∥~L0
∥∥ . . . L11 =

∥∥~L11
∥∥

and the largest and smallest edge lenghts are, respectively,

Lmin = min{L0, . . . ,L11}
Lmax = max{L0, . . . ,L11} .

(23)

Hexahedra have four diagonal vectors:

~D0 = ~P6−~P0
~D1 = ~P7−~P1

~D2 = ~P4−~P2
~D3 = ~P5−~P3

(24)

Dmin = min
{∥∥~D0

∥∥,∥∥~D1
∥∥,∥∥~D2

∥∥,∥∥~D3
∥∥}

Dmax = max
{∥∥~D0

∥∥,∥∥~D1
∥∥,∥∥~D2

∥∥,∥∥~D3
∥∥} (25)
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The principal axes are

~X1 =
(
~P1−~P0

)
+
(
~P2−~P3

)
+
(
~P5−~P4

)
+
(
~P6−~P7

)
~X2 =

(
~P3−~P0

)
+
(
~P2−~P1

)
+
(
~P7−~P4

)
+
(
~P6−~P5

)
~X3 =

(
~P4−~P0

)
+
(
~P5−~P1

)
+
(
~P6−~P2

)
+
(
~P7−~P3

) (26)

The cross derivatives are then

~X12 = ~X21 =
(
~P2−~P3

)
−
(
~P1−~P0

)
+
(
~P6−~P7

)
−
(
~P5−~P4

)
~X13 = ~X31 =

(
~P5−~P1

)
−
(
~P4−~P0

)
+
(
~P6−~P2

)
−
(
~P7−~P3

)
~X23 = ~X32 =

(
~P7−~P4

)
−
(
~P3−~P0

)
+
(
~P6−~P5

)
−
(
~P2−~P1

) (27)

We can define a series of 3× 3 Jacobian matrices on a given hexahedron using the edge
vectors~Li to form columns of each matrix:

A0 = ( ~L0 , ~L3 , ~L4 )
A1 = ( ~L1 , −~L0 , ~L5 )
A2 = ( ~L2 , −~L1 , ~L6 )
A3 = ( −~L3 , −~L2 , ~L7 )
A4 = ( ~L11 , ~L8 , −~L4 )
A5 = ( −~L8 , ~L9 , −~L5 )
A6 = ( −~L9 , ~L10 , −~L6 )
A7 = ( −~L10 , −~L11 , −~L7 )
A8 = ( ~X1 , ~X2 , ~X3 )

(28)

These matrices will be useful in calculating the volume and condition number of a hexahe-
dron. Some operations we will need to perform on these matrices can be reduced to simple
vector operations. Since this is how we define the matrices, these forms of the operations
serve as efficient implementations.

Let A be one of these 3× 3 matrix defined by the column vectors ~v1,~v2,~v3, i.e., A =
[~v1,~v2,~v3]. Then,

|A|2 =
∥∥~v1
∥∥2 +

∥∥~v2
∥∥2 +

∥∥~v3
∥∥2

and
|adj(A)|2 =

∥∥~v1×~v2
∥∥2 +

∥∥~v2×~v3
∥∥2 +

∥∥~v3×~v1
∥∥2

.

We then define α to be the determinant of A

α = det(A) =~v1 · (~v2×~v3)

and we denote the determinant of a specific one of the Ai as

αi = det(Ai)
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where i ∈ {0,1, . . . ,8}. Finally, we define normalized versions of the Jacobian matrices

Â =

(
~v1∥∥~v1
∥∥ ,

~v2∥∥~v2
∥∥ ,

~v3∥∥~v3
∥∥
)

and their normalized determinants

α̂u = det
(
Âi
)
.
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7.1 Diagonal

This metric is the ratio of the minimum diagonal length to the maximum diagonal length:

q =
Dmin

Dmax
.

Note that if Dmax < DBL MIN, we set q = DBL MAX .

hexahedral diagonal
Dimension: 1
Acceptable Range: [0.65,1]
Normal Range: [0,1]
Full Range: [1,DBL MAX ]
q for unit cube: 1
Reference: –
Verdict function: v hex diagonal
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7.2 Dimension

This metric was specifically designed in the context of Sandia’s Pronto code, for stable time
step calculation. It is defined as follows:

q =
V

2∇V

hexahedral dimension
Dimension: L1

Acceptable Range: application-dependent
Normal Range: [0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for unit cube: 1
Reference: Adapted from [12]
Verdict function: v hex dimension
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7.3 Distortion

Given a set of Gauss points G = {gk} for a hexahedron, let

|J|= min
gk

{
det(Jgk)

}
be the minimum determinant of the Jacobian when evaluated at each Gauss point gk. Then
the distortion is

q =
|J|Vm

V
where Vm = 8 is the volume of a “master” hexahedron defined by the vertices

~P0 = ( −1 , −1 , −1 )
~P1 = ( 1 , −1 , −1 )
~P2 = ( 1 , 1 , −1 )
~P3 = ( −1 , 1 , −1 )

~P4 = ( −1 , −1 , 1 )
~P5 = ( 1 , −1 , 1 )
~P6 = ( 1 , 1 , 1 )
~P7 = ( −1 , 1 , 1 )

and V is the volume of the hexahedron being evaluated. See §7.19 for details on computing
the hex volume V .

hexahedral distortion
Dimension: L3

Acceptable Range: [0.5,1]
Normal Range: [0,1]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit cube: 1
Reference: Adapted from [11]
Verdict function: v hex distortion
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7.4 Edge Ratio

The edge ratio quality metric is the ratio of the longest to shortest edge of a hexahedron:

q =
Lmax

Lmin
.

hexahedral edge ratio
Dimension: 1
Acceptable Range: –
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit cube: 1
Reference: –
Verdict function: v hex edge ratio
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7.5 Jacobian

This is the minimum determinant of the Jacobian matrix evaluated at each corner and the
center of the element:

q = min
{
{αi}7

i=0 ,
α8

64

}
.

This can also be interpreted as the minimum pointwise volume of local map at the 8 corners
and the center of the hexahedron.

hexahedral Jacobian
Dimension: L3

Acceptable Range: [0,DBL MAX ]
Normal Range: [0,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit cube: 1
Reference: [5]
Verdict function: v hex jacobian
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7.6 Maximum Edge Ratio

Given principal axes with lengths L f and Lg, the aspect ratio is defined as the largest ratio
of those lengths

A f g = max
{

L f

Lg
,

Lg

L f

}
.

Since a hexahedron has 3 principal axes, we take the largest of all pairwise combinations
of axes.

q = max
{

A∥∥~X1

∥∥∥∥~X2

∥∥,A∥∥~X1

∥∥∥∥~X3

∥∥,A∥∥~X2

∥∥∥∥~X3

∥∥}

Note that if
∥∥~X1
∥∥ or

∥∥~X2
∥∥ or

∥∥~X3
∥∥< DBL MIN, we set q = DBL MAX .

hexahedral maximum edge ratio
Dimension: 1
Acceptable Range: [1,1.3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit cube: 1
Reference: Adapted from [12]
Verdict function: v hex max edge ratio
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7.7 Maximum Aspect Frobenius

For hexahedra, there is not a unique definition of the aspect Frobenius. Instead, we use the
aspect Frobenius defined for tetrahedra (see section §6.3), but choose the reference W ele-
ment to be right isosceles at the hexahedral corner. Consider the eight tetrahedra formed by
edges incident to the corner of a hexahedron. Given a corner vertex i and its three adjacent
vertices j, k, and ` ordered in a clockwise manner (so that i jk` is a positively oriented tetra-
hedron), denote the tetrahedral aspect frobenius of that corner as Fi jk`. To obtain a single
value for the metric, we take the maximum value of the eight unique tetrahedral aspects

q = max(F0134,F1205,F2316,F3027,F4750,F5461,F6572,F7643) .

In the past, this metric was called the condition number and computed in terms of the Jaco-
bian matrices Ai and their determinants αi as in §7. We provide that method of computation
below for reference purposes. First, define

κ(Ai) = |Ai|
∣∣∣A−1

i

∣∣∣= |Ai| |adj(Ai)|
αi

.

There are 9 of these matrices and we evaluate the condition number at each and take a third
of the maximum:

q =
1
3

max{κ(A0),κ(A1), . . . ,κ(A8)}

The first 8 matrices represent the condition at the corners and the last represents the con-
dition number at the element’s center. Note that if αi ≤ DBL MIN, for any i, then q =
DBL MAX .

hexahedral maximum aspect frobenius
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit cube: 1
Reference: [5]
Verdict function: v hex max aspect frobenius or v hex condition∗

∗ indicates a function that is deprecated and may be removed in future versions of Verdict.
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7.8 Mean Aspect Frobenius

For hexahedra, there is not a unique definition of the aspect Frobenius. Instead, we use
the aspect Frobenius defined for tetrahedra (see section §6.3), but choose the reference W
element to be right isosceles at the hexahedral corner. Consider the eight tetrahedra formed
by edges incident to the corner of a hexahedron. Given a corner vertex i and its three
adjacent vertices j, k, and ` ordered in a clockwise manner (so that i jk` is a positively
oriented tetrahedron), denote the tetrahedral aspect frobenius of that corner as Fi jk`. To
obtain a single value for the metric, we average the eight unique tetrahedral aspects

q =
1
8

(F0134 +F1205 +F2316 +F3027 +F4750 +F5461 +F6572 +F7643) .

hexahedral mean aspect frobenius
Dimension: 1
Acceptable Range: [1,3]
Normal Range: [1,DBL MAX ]
Full Range: [1,DBL MAX ]
q for unit cube: 1
Reference: –
Verdict function: v hex med aspect frobenius
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7.9 Oddy

First we define the Oddy O in terms of the Jacobian matrices Ai from §7:

O(Ai) =
|At

iAi|2− 1
3 |Ai|4

α
4
3
i

.

The metric value is then the maximum Oddy over all the corners and the element center

q = max
i∈{0,1,...,8}

{O(Ai)} .

This can be interpreted as the maximum deviation of the metric tensor (At
iAi) from the

identity matrix, evaluated at the corners and element center.

Note that if αi ≤ DBL MIN for any i, we set q = DBL MAX .

hexahedral Oddy
Dimension: 1
Acceptable Range: [0,0.5]
Normal Range: [0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for unit cube: 0
Reference: Adapted from [7]
Verdict function: v hex oddy
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7.10 Relative Size Squared

Consider the ratio D of the hex volume to the average volume of an ensemble of hexahedra:

D = ∑
7
i=0 αi

8V
=

α8

64V
.

The relative size the minimum of D and its inverse; and the relative size squared is

q =
(

min
{

D,
1
D

})2

.

Note that if V < DBL MIN or D≤ DBL MIN, we set q = 0.

hexahedral relative size squared
Dimension: 1
Acceptable Range: [0.5,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit cube: Dependent on V
Reference: [6]
Verdict function: v hex relative size squared
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7.11 Scaled Jacobian

This metric is the minimum determinant of the Jacobian matrix evaluated at each corner
and the center of the element, divided by the corresponding edge lengths.

q = min
i∈{0,1,...,8}

{α̂i} .

Note that if Lmin
2 ≤ DBL MIN, we set q = DBL MAX .

hexahedral scaled Jacobian
Dimension: 1
Acceptable Range: [0.5,1]
Normal Range: [−1,1]
Full Range: [−1,DBL MAX ]
q for unit cube: 1
Reference: [5]
Verdict function: v hex scaled jacobian
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7.12 Shape

The shape metric is 3 divided by the minimum mean ratio of the Jacobian matrix evaluated
at the element corners:

q = 3 min
i∈{0,1,...,8}

{
αi

2
3

|Ai|2
,

}
.

Note that if αi ≤ DBL MIN or |Ai|2 ≤ DBL MIN for any i, we set q = 0.

hexahedral shape
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit cube: 1
Reference: [6]
Verdict function: v hex shape
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7.13 Shape and Size

Let R be the relative size squared as defined in §7.10 and S be the shape as defined in §7.12.
The “shape and size” metric is the the product of these two numbers:

q = RS

hexahedral shape and size
Dimension: 1
Acceptable Range: [0.2,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit cube: Dependent on V
Reference: [6]
Verdict function: v hex shape and size
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7.14 Shear

The shear metric is the minimum of the Jacobian matrix evaluated at the element corners
divided by the product of the length of the 3 edge vectors meeting at that corner:

q = min
i∈{0,1,...,8}

{α̂i} .

Note that if α̂i ≤ DBL MIN for any i or if Lmin
2 ≤ DBL MIN, we set q = 0.

hexahedral shear
Dimension: 1
Acceptable Range: [0.3,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit cube: 1
Reference: [6]
Verdict function: v hex shear
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7.15 Shear and Size

Let R be the relative size squared as defined in §7.10 and H be the shear as defined in §7.14.
The “shear and size” metric is the the product of these two numbers:

q = RH

hexahedral shear and size
Dimension: 1
Acceptable Range: [0.2,1]
Normal Range: [0,1]
Full Range: [0,1]
q for unit cube: Dependent on V
Reference: [6]
Verdict function: v hex shear and size
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7.16 Skew

To compute the skew, we’ll need to compute normalized versions of the principal axes:

X̂1 = ~X1∥∥~X1

∥∥
X̂2 = ~X2∥∥~X2

∥∥
X̂3 = ~X3∥∥~X3

∥∥
Skew measures the degree to which a pair of vectors are parallel using the dot product. This
means we have three skews to consider for a hexahedron, each of which is the absolute
value of the cosine of the angle between two principal axes:

skew12 =
∣∣X̂1 · X̂2

∣∣
skew13 =

∣∣X̂1 · X̂3
∣∣

skew23 =
∣∣X̂2 · X̂3

∣∣ .
The metric is then the maximum of these skews

q = max{skew12,skew13,skew23}

Note that if
∥∥~X1
∥∥ or

∥∥~X2
∥∥ or

∥∥~X3
∥∥≤ DBL MIN, we set q = DBL MAX .

hexahedral skew
Dimension: 1
Acceptable Range: [0,0.5]
Normal Range: [0,1]
Full Range: [0,DBL MAX ]
q for unit cube: 0
Reference: Adapted from [12]
Verdict function: v hex skew
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7.17 Stretch

The stretch is the ratio of the minimum edge length to the maximum diagonal, normalized
so that a unit cube has a value of 1:

q =
√

3
Lmin

Dmax
.

Note that if Dmax < DBL MIN, we set q = DBL MAX .

hexahedral stretch
Dimension: 1
Acceptable Range: [0.25,1]
Normal Range: [0,1]
Full Range: [0,DBL MAX ]
q for unit cube: 1
Reference: Adapted from [3]
Verdict function: v hex stretch
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7.18 Taper

Taper measures the maximum ratio of a cross-derivative to its shortest associated principal
axis. Given a pair of principal axes f and g, the taper is

Tf g =

∥∥~X f g
∥∥

min
{∥∥~X f

∥∥,∥∥~Xg
∥∥}

The metric is then the maximum taper of any cross-derivative

q = max{T12,T13,T23}

Note that if
∥∥~X1
∥∥ or

∥∥~X2
∥∥ or

∥∥~X3
∥∥< DBL MIN, we set q = DBL MAX .

hexahedral taper
Dimension: 1
Acceptable Range: [0,0.5]
Normal Range: [0,DBL MAX ]
Full Range: [0,DBL MAX ]
q for unit cube: 0
Reference: Adapted from [12]
Verdict function: v hex taper
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7.19 Volume

The volume of a hexahedron is simply

q =
α8

64
.

Physically, this is the product of the magnitudes of the 3 principal axes.

hexahedral volume
Dimension: L3

Acceptable Range: [0,DBL MAX ]
Normal Range: [0,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit cube: 2
Reference: –
Verdict function: v hex volume

100



8 Other Element Quality Metrics

In addition to triangular, quadrilateral, tetrahedral, and hexahedral elements, Verdict also
provides volume computation for other element types, namely: pyramids (with quadrilat-
eral base), wedges, and knives, respectively illustrated in Figures 9, 10, and 11. Note that
vtkMeshQuality does not support these element types.

Figure 9. Numbering of vertices and edges on a pyramidal ele-
ment.

Figure 10. Numbering of vertices and edges on a wedge element.

The volume V of any of these elements is calculated by decomposing them in a tetrahedral
partition, as follows:

• pyramids are divided into 2 tetrahedra,

• wedges are divided into 3 tetrahedra, and

• knives are divided into 4 tetrahedra.

Further, we define a unit pyramid as a pyramid whose triangular faces are equilateral trian-
gles with unit edge length. Note that this entails that the quadrilateral face is a unit square,
thus making the unit pyramid a special case of regular pyramid.
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Figure 11. Numbering of vertices and edges on a knife element.

Finally, we define a unit wedge as a wedge whose quadrilateral faces are unit squares. Note
that this entails that the 2 triangular faces are equilateral triangles with unit edge length,
thus making the unit wedge a special case of right triangular prism.
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8.1 Pyramid Volume

The pyramid volume metric is simply

q = V.

volume
Dimension: L3

Acceptable Range: [0,DBL MAX ]
Normal Range: [−DBL MAX ,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit element: 1

3
√

2
Reference: –
Verdict function: v pyramid volume
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8.2 Wedge Volume

The wedge volume metric is simply
q = V.

volume
Dimension: L3

Acceptable Range: [0,DBL MAX ]
Normal Range: [−DBL MAX ,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit element:

√
3

4
Reference: –
Verdict function: v wedge volume
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8.3 Knife Volume

The knife volume metric is simply
q = V.

volume
Dimension: L3

Acceptable Range: [0,DBL MAX ]
Normal Range: [−DBL MAX ,DBL MAX ]
Full Range: [−DBL MAX ,DBL MAX ]
q for unit element: N/A
Reference: –
Verdict function: v knife volume
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