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Abstract

Efforts to address research issues associated with computational tools for electro-
magnetic inversion problems are addressed . Advances in linear solvers, edge element

discretizations, and sharp interface inversion tools are described . An algebraic multigrid

linear solver for Maxwell's equations in the frequency domain, is available in the Trilinos

package ML. The software package Ptenos was developed, that implements the De Rham
complex of hexahedral finite element meshes, including edge elements for Maxwell's

equations . In sharp interface inversion methods, the conductivity is approximated by a
piecewise constant in bulk regions . A triangulation represents the two dimensional sur-

face between regions. Methods for condensed curvilinear representations of the interface
surface were studied, but certain robustness issues were not resolved. Inversion methods

were implemented using existing software packages to manipulate the interface surface
mesh. The sharp interface inversion methodology was evaluated on a three-dimensional

direct current problem using P1 finite elements.
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1 Introduction and Summary

Electromagnetic induction is a classic geophysical exploration method designed for subsur-
face characterization - in particular, sensing the presence of geologic heterogeneities and fluids
such as groundwater and hydrocarbons . Several approaches to the computational problems as-
sociated with predicting and interpreting electromagnetic phenomena in and around the earth
are addressed herein. Publications resulting from the project include [31].

To obtain accurate and physically meaningful numerical simulations of natural phenom-
ena, computational algorithms should operate in discrete settings that reflect the structure of
governing mathematical models . In section 2, the extension of algebraic multigrid methods
for the time domain eddy current equations to the frequency domain problem is discussed.
Software was developed and is available in Trilinos ML package . In section 3 we consider
finite element approximations of De Rham's complex. We describe how to develop a family
of finite element spaces that forms an exact sequence on hexahedral grids . The ensuing family
of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij
who first proposed a general method for developing tangentially and normally continuous vec-
tor fields on hexahedral elements . The use of this complex is illustrated for the eddy current
equations and a conservation law problem. Software was developed and is available in the
Ptenos finite element package.

The more popular methods of geophysical inversion seek solutions to an unconstrained
optimization problem by imposing stabilizing constraints in the form of smoothing operators
on some enormous set of model parameters (i .e. "over-parametrize and regularize") . In con-
trast we investigate an alternative approach whereby sharp jumps in material properties are
preserved in the solution by choosing as model parameters a modest set of variables which de-
scribe an interface between adjacent regions in physical space . While still over-parametrized,
this choice of model space contains far fewer parameters than before, thus easing the com-
putational burden, in some cases, of the optimization problem . And most importantly, the
associated finite element discretization is aligned with the abrupt changes in material prop-
erties associated with lithologic boundaries as well as the interface between buried cultural
artifacts and the surrounding Earth.

In section 4, algorithms and tools are described that associate a smooth interface surface to
a given triangulation. In particular, the tools support surface refinement and coarsening . Sec-
tion 5 describes some preliminary results on the application of interface identification meth-
ods to some model problems in geophysical inversion . Due to time constraints, the results
described here use the GNU Triangulated Surface Library for the manipulation of surface
meshes and the TetGen software library for the generation of tetrahedral meshes.
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2 AMG for time harmonic Maxwell's equations

An algebraic multigrid (AMG) linear solver for Maxwell's equations in the frequency domain,
V x V x +iwua is available in the Trilinos package ML . The capabilities of the solver have
been discussed in [30] . in a presentation at the 2004 Copper Mountain conference on Iterative
Methods titled "An AMG solver for the 3D time-harmonic Maxwell equations ." Discretization
of Maxwell's equations generates a sparse linear system with coefficient matrix A with real
and imaginary parts A = S + iM.

We found that the AMG linear solvers developed for time domain simulations of physics
governed by the eddy current equations readily extend to frequency domain simulations . ML
does not support complex arithmetic . Equivalent real forms of the linear systems are solved,
but these methods are not recommended for complex symmetric (and non-Hermitian) linear
systems [12] . The emphasis herein is on the development of smoothers for ML in real arith-
metic.

As a post script to the work described next, smoothers (e .g.complex symmetric QMR) may
now be implemented using complex arithmetic by using the new Teuchos complex arithmetic
package in Trilinos.

2.1 AMG for Maxwell's in the time domain

The algorithm for the frequency domain operator is based on AMG methods for the time
domain Maxwell's operator V x V x +µo-dt . The AMG methods use Distributed Relax-
ation [20, 22, 4, 5] smoothers . Distributed Relaxation for the frequency domain operator
will be derived from the method for the time domain operator . Other code is stored in
Trilinos/packages/ml/examples/Other.

2.1.1 AMG

In order to apply AMG to S, denote the coarsest level as ko = 0 . The input is a set of
operators on the finest level (k > 0) . The input includes S k , the null space of S k , Tk and the
prolongation or interpolation operator, P k .

The construction of P k , the prolongation operator, addresses several issues . Actually there
are two prolongation operators on each level, one that acts on nodal quantities, and another that
acts on edge quantities . Furthermore the edge prolongator is "smoothed" P :_ (I-pD- 1 S)P,
where D is the diagonal of S, and p is an upper bound for the spectral radius of D- 1 S.

Multigrid is defined recursively. For example, Ak_1 := PkAkPk .

The basic subroutine MG(b k , uk , k) : takes as input the right-and side b k on the kth level,
and returns the approx solution Uk also on the kth level.

MG(b k , uk , k):
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• Rk(Ak, bk, uk)

• Ifk~0

1. rk = bk - AkUk

2. bk-1 = Pkrk

3. uk_ 1 = 0

4. MG (bk-1, Uk_1, k — 1)

5. Uk := Uk + PkUk-1

The operator Rk is called the smoother. On the most coarse level only, k = 0, Ro is an exact
solve . The smoother is defined next.

2.1.2 Distributed Relaxation smoothers

Distributed Relaxation smoothers (for time domain problems, [1]) incorporate the null space
of S (think gauge invariance).

1. Aproj := TTAT

2. Axe = f (e.g . polynomial smoother)

3. Aprojxn = TT(f — Axe)

4. xe := xe + Txn

5. Ax e = f (again)

In steps two and three above, xe and xn are approximated by applying a few iterations of some
iterative linear solver.

2.2 Frequency domain solvers

The software selectively uses equivalent real forms [12] to implement complex arithmetic.
The spectrum of A is observed to be an L-shaped region. In regions where the mesh

is coarse, iM dominates, and the corresponding high frequency eigenvalues are near to the
imaginary axis . In regions where the mesh is fine, S dominates, and the corresponding high
frequency eigenvalues are near to the positive real axis . Moreover, as local mesh refinement
proceeds, the legs of the L become increasingly thin (or equivalently long).

The standard equivalent equivalent real form of A is

B —

C
S —M
M S
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A has the attractive property that its spectrum lies entirely in the closed first quadrant of the
complex plane . The spectrum of B is the union of the spectrum of A with the spectrum of
its complex conjugate . The standard equivalent equivalent real form is not recommended for
matrices, such as A, with spectrum in the first quadrant.

In ML, a complex polynomial preconditioner is applied to A using complex arithmetic
implicitly. The prolongators and null spaces are determined from

P — diag(P, P)andT — diag(T, T).

In preliminary results for a problem on a cubic domain with a regular mesh of 8000 nodes,
24, 000 edges, MG preconditioned GMRES reduces the residual norm by a factor of 10 -10 in
23 iterations.

Problems with textbook polynomial smoothers arise in examples of highly conductive
materials modeled on coarse grids, 11M > I I S I I • In such cases one complex GMRES step
with diagonal preconditioning, produces satisfactory results . The residuals satisfy rn+1 =

(I — ctinD - 'A)rn where D is the diagonal of A, and an is the complex number minimizing

I I rn+1 112 . The difficultly in implementing this smoother lies in simulating complex arithmetic
within ML.

2.2.1 Reproducing Kernels

An alternative is to use the Bergman kernel to define a polynomial preconditioner of degree p
with respect to an inner product that corresponds to the linear system at hand.

First we describe how to associate an inner product with a linear system . It is easy (see
[13]) to generate orthogonal polynomials based on a given inner product, e .g.

b

(2.1)

	

(f, 9)p = f f (x)9(x)p(x)dx.
a

Given a simply connected subdomain D of the complex plane with Lipshitz boundary, Berg-
man's kernel polynomials (see [19]) are based on

(2.2)

	

(f, 9)D = f f(z)g(z)dxdy.
D

However, for our purposes, it may suffice to just integrate over two lines, [a, b] on the real axis
determined from S, and [ic, id] on the imaginary axis determined from iM;

	

b

	

id

(2.3)

	

(f, 9) = f f (x)g(x)dx +
f

f ( z)9(z ) l dz l ,

	

a

	

ac

Next we show how to use reproducing kernels to construct polynomial preconditioners
following [15] §2.5. Let Pn denote the set of polynomials of degree at most n.
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The Krylov subspace Kn (A ; r0) is isomorphic to Pn_ 1 . The isomorphism maps the ex-
pansion coefficients of the vector with respect to the basis {A i ro }j>o to the coefficients of a
polynomial (as a sum of the monomials).

This is actually a very familiar idea . Given an inner product on vectors, one may use
the isomorphism to implicitly define an inner product on polynomials . In this way, the it-
erative methods in general purpose software packages are instances of kernel polynomials.
Conversely, given an inner product on polynomials, one may use the isomorphism and the
associated kernel polynomials to construct special iterative methods.

In a polynomial based iterative method for solving Ax = f from the initial guess x o, the
nth residual rn = f — Axn has the form rn = pn (A)ro for a degree n polynomial pn ( .)
such that pn (0) = 1. The minimum residual problem is 1 Irn ll = min{ 1 1p (A) ro : p in 'PT,
and pn (0) = 1} . If {0;} j>o is a family of orthogonal polynomials, then the corresponding
nth kernel polynomial is given by Kn (t; ) = E 'tpj (t) j (f) . The family of polynomials that
solve the minimal residual problem are {Kj (t ; 0)/Kj(0 ; 0)};>0 (see [15] Theorem 2 .5 .1).

2.3 Software

The algorithm is implemented in ML, Sandia's algebraic multilevel software package . The
setup of the multigrid method leverages an existing setup method for real-valued systems
from time-domain Maxwell problems . The block matrix B is applied implicitly to a vector
via wrappers in Aztec 2 .1 . (Aztec does not have complex-arithmetic capabilities) . An existing
Distributed Relaxation method for real systems was adapted specifically to operate on block
systems like B . The code currently has explicit dependencies on Sandia's finite difference
software package, EM3D, which generates T strictly for a Yee grid.

However, generalizing it (to edge elements) would be fairly straight-forward.

3 Exact sequences of finite elements on hexahedral and
quadrilateral lattices

The operators gradient, curl and divergence are fundamental to the differential equations that
model physical phenomena such as electromagnetic waves, diffusion, etc . These operators
along with their domains' H(Q, grad ), H(Q, curl) and H(SZ, div) form a mathematical
structure called De Rham complex. A fundamental property of the De Rham complex is
the exactness of the sequence

(3.1)

	

H(Q, grad)

	

H(Q, curl)

	

H(S2, div) ° L2 (Sl).

'We choose this notation favored by Bossavit [8], instead of the commonly used one H i (S2) in order to
emphasize the connection between the spaces and the differential operators
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Exactness means that each differential operator maps the space to its left into the kernel of the
next differential operator. In Section 3.1 we discuss this property in more detail.

Maxwell's equations are one important example of a mathematical model that fits the struc-
ture of (3 .1) . When these equations are solved by finite element methods, it is advantageous
to use a family of spaces that mimics the exactness property of De Rham's complex . This will
result in approximate solutions that adhere better to the principles governing the physics of
electromagnetic fields . Utility of such finite elements is by no means limited to the Maxwell's
equations . The spaces H(Q, grad ), H(Q, div) and H(Q, curl) are important to other phys-
ical models and they also appear in various mixed methods ; see [10] . This is, perhaps, why
the traditional focus in finite element research has been on conforming approximations of the
individual spaces rather than on the whole De Rham complex . The standard c° nodal finite
elements are a classical example of H(Q, grad) conforming spaces, while H(Q, div) and
H(S2, curl) conforming finite elements have been proposed as early as 1977 by Raviart and
Thomas [34] . However, it was Bossavit who first pointed out the importance of approximating
the complete De Rham complex and recognized the principal role of differential forms in this
process.

The Whitney complex ; see [8] and [7], is the first example of a complete exact sequence of
finite element spaces . Whitney elements are defined on simplicial triangulations and provide
conforming approximation of H(Q, grad ), H(Q, div ), H(Q, curl ), and L 2 (Q). In three
dimensions the Whitney complex contains the spaces W i , i = 0, . . . , 3 . Each space Wi has
degrees of freedom defined on i-simplices . For i = 0, 1, 2 and 3 these are the nodes, edges,
faces and tetrahedrons of the simplicial triangulation . Thus, W° is the familiar scalar C°-finite
element space, while W 3 is a piecewise constant space on tetrahedrons . The functions in
W1 are vector fields which are also called "edge elements" because their degrees of freedom
are circulations along the edges . Likewise, functions in W2 are vector fields called "face
elements" because their degrees of freedom are fluxes across a 2-simplex, that is, a face . The
Whitney complex was originally conceived as an approximation tool for differential forms so
the exactness property

(3.2)

	

W° ° W1 °"-> W 2 ° W3 .

was an intrinsic characteristic of the ensuing spaces . This property allowed Bossavit to justify
their use in computational electromagnetism in his seminal paper [7] . Examples of finite
element spaces that form exact sequences exist on other meshes as well . For bricks, prisms
and rectangles finite elements that are part of a discrete De Rham complex were developed by
Nedelec, Brezzi, Douglas, Fortin and Marini, among others ; see [10], [14], [28] and [29].

All these spaces, including the Whitney complex, are examples of affine families of finite
element spaces . Affine families are distinguished by the existence of an affine mapping be-
tween each element 1C in the triangulation and a canonical reference element 1C ; see [9, p .72]

2 1n three dimensions the reference element can be either a tetrahedron (3-simplex) or a cube ; in two dimen-
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or [11] . As a result, such finite element spaces contain affine images of polynomials defined
locally on the reference element. A general methodology for developing exact sequences of
affine finite element spaces was suggested in [21] by Hiptmair . His method extends application
of differential forms ideas beyond the original example of Whitney spaces.

Popularity of affine finite element spaces is largely owed to the analytical and computa-
tional convenience afforded by the simplicity of affine maps . However, because the class of
transformations between 1C and 1C is restricted to affine maps, the type of computational el-
ements is limited to tetrahedrons, triangles, parallelepipeds or parallelograms, and does not
include quadrilaterals or hexahedrals ; see [9, p .114-] . Indeed, geometry of hexahedrals (or
quadrilaterals) implies that the mapping between a reference element 1C and an isoparametric

element 1C is not affine (unless 1C belongs to the exceptional cases mentioned above) . Conse-
quently, the finite element space on 1C ceases to be a polynomial space, even if the reference
space on 1C is such . Instead it contains functions that are (nonlinear) images of polynomials.
This does not pose a serious problem when the set of degrees of freedom is limited to the
nodal values . In fact, nodal isoparametric elements are routinely used along with their affine
counterparts.

However, exact sequences of finite elements necessarily involve vector valued functions
and degrees of freedom that depend on normal and tangential directions on the isoparametric
element . In such cases development of the relevant vector bases becomes rather unintuitive,
especially if one attempts to carry it on a reference element . Since the use of unstructured
hexahedral/quadrilateral grids in engineering computations, including electromagnetism, is
widespread, it is desirable to develop a standard procedure that leads to a discrete De Rham
complex on hexahedral grids.

An intuitive method for developing edge and face elements on arbitrary hexahedra (isopara-
metric bricks) was first given by van Welij [37] . The van Welij elements are defined directly
in the computational domain using the coordinate functions of the inverse mapping between a
reference and computational elements . In this report we show that the edge and face elements
proposed in [37] form a part of a discrete De Rham complex on hexahedra . We develop a
systematic procedure for deriving each space from this complex based on representations of
nodes, edges and faces in terms of local coordinate maps . While it is clear that this process can
be interpreted and cast in the language of differential forms we choose instead to emphasize
geometrical constructs that relate directly to the implementation of the finite elements . The
first link in our complex is the standard isoparametric space Q 1 (k) which plays the role of
W° from the Whitney complex . The second and third links are analogues of the edge and
face elements, while the last space can be identified with a single density function . For paral-
lelepipeds or parallelograms we recover the well-known examples of [29], or [14] . However,
for general hexahedrals the edge, face and density spaces are strikingly different - they are
images of rational functions defined on the reference element . In other words, to define exact

sions triangles and squares are used .
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sequences on hexahedrals requires more than polynomial reference spaces.
We also pay special attention to finding the proper restrictions of the finite element se-

quence to two space dimensions . While the resulting sequence cannot be exact in the same
sense as its three dimensional counterpart, we identify two exactness properties related to the
two curl operators in R2

3.1 De Rham complex

Differential equations models are mathematical expressions of physical phenomena . They
operate in an abstract framework described by differential operators and function spaces rep-
resenting their domains and ranges . Three fundamental operators are the gradient, curl and
divergence. These operators and their domains form a mathematical structure called a De
Rham complex . Our presentation will follow closely the treatment of Bossavit in [6]-[7] . To
discuss further De Rham's complex let Q denote a bounded region in R n with boundary aQ.
We assume that as2 has two disjoint pieces denoted by F and F* . As usual, L 2 (Q) and L2 (Q)
will denote the spaces of all square integrable scalar and vector functions on a We introduce
the spaces

(3.3)

	

H(Q, grad) _ {c E L2 (Q) 10o E L2 (Q)},

(3.4)

	

H(Q,curl) = {u E L2(Q) Iv x u E L2 (Q)},

(3.5)

	

H(Q,div) = {u E L2 (Q)1V • u E L2(Q)}.

Clearly, H(Q, grad) is a closed subspace of L 2 (Q) and (3.4)-(3.5) are closed subspaces of
L2 (Q) . To use these spaces as domains for the gradient, curl and the divergence, they must
be augmented with suitable boundary conditions . Consider first F and the subspaces of (3 .3)-

(3 .5)

(3 .6)

	

Ho(S2, grad) = {~ E H(Q, grad )10 = 0 on T},

(3 .7)

	

Ho(Q, curl) = {u E H(Sl, curl )1u x n = 0 on F},

(3 .8)

	

Ho(Q, div) = {u E H(Q, div )1u • n = 0 on F}.

The four spaces, Ho(Q, grad ), Ho(Q, curl ), Ho(Q, div ), L2 (Q), and the three operators, V,
V x and 0 , form a De Rham complex relative to F.

The dual complex can be introduced by using the adjoint differential operators V *, (V x )*
and (V . )* . The adjoint operators are defined in the usual manner by virtue of the integral
identities

vdx = J OV*vdx + J uv ndI';

fV xu •vdx=
J

u•(Vx)*vdx+ J u•vxndF;
r
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and

J vV udx = J u(V .)* dx + IF *
u • ndT,

st

V* = —VS, (Ox)* = V x and (V.)* = -o
that is

with domains

(3 .9)

	

1-1( (SZ, div) = {v E H(Q, div) • n = 0 on T*},
(3 .10)

	

H, (Q, curl) = {v E H(Q, curl) x n = 0 on F*},

(3 .11)

	

Ho (Q, grad) = { E H(Q, grad) IV = 0 on F*}.

The spaces (3.9)-(3.11), and L2 (Q), and the adjoint operators V*, (Ox)*, (V .)* form the dual
De Rham complex . Note that these four spaces and three operators define a complex relative
to F*, whose dual is the original De Rham complex relative to F.

3.2 The van Welij complex : an exact finite element sequence on hexahe-
dra

To avoid confusion with the well-established notation for the Whitney complex we use W
to denote the members of the van Welij complex . Of course, the index i now does not refer
to an i—simplex, but to the position of the finite element space in the exact sequence. Thus,
W° is the usual C° isoparametric finite element space on hexahedra ; W1 is the edge element
space; W2 is the face element space, and W 3 is the last member of the discrete complex.
As in the case of Whitney elements, the degrees of freedom for 1/V°, W 1 and W 2 are scalar
nodal values, circulations and fluxes of vector fields . Likewise, W3 is associated with a single
degree of freedom per element.

The parallels between the Whitney and the van Welij complexes do not end here . The finite
element bases that form the Whitney complex allow simple and elegant description in terms
of the barycentric coordinates Ai associated with each n-simplex of the triangulation ; see [7]
and [8] The particular forms of these basis functions involve combinations of Ai and their
gradients, and correlate with expressions that describe nodes, lengths of edges, areas of faces
and volumes of simplices . While hexahedra in R3 do not posses barycentric coordinates, we
show that the bases of van Welij elements admit virtually the same descriptions, but relative to
trilinear local basis functions defined on each hexahedral element . Combinations of these local
functions and their gradients describe the nodes, lengths of edges, areas of faces and volumes
of hexahedra in the same manner as barycentrics do for n-simplices . These similarities are
hardly coincidental - conceptually, both families of spaces are rooted in approximations of
differential forms . For more details about this connections we refer to [21].

14



We begin with developing the finite element functions for one element . Then we show how
to combine functions defined on individual elements into finite element spaces on hexahedral
or quadrilateral triangulation of the computational domain . For the first and the last members
of the complex W Z this process is standard . This is not so for W 1 and W 2 , where we have to
deal with vector fields defined on elements sharing an edge or a face . To combine these fields
into a single piecewise polynomial field with the desired tangential or normal continuity, it is
necessary to introduce edge and face orientation for the triangulation.

3.2.1 The van Welij complex on a hexahedral

This section describes in detail how the van Welij complex may be developed in two and three
space dimensions for one element and shows the exactness property of the resulting family of
finite element spaces . Three-dimensions are the natural setting for edge and face elements and
is considered first . The two-dimensional complex is then derived by embedding a quadrilateral
element into a virtual hexahedral and consistent restriction of the ensuing 3D complex to the
plane.

3.2.2 Parametrizations of hexahedra

This section introduces and studies mappings between convex hexahedra in R 3 . Such map-
pings and their properties are fundamental to the development and understanding of finite
element analogues of exact sequences of spaces . We recall for further reference the space
Qi O of all polynomial functions whose degree in each coordinate direction does not exceed
k .

To this end, we endow R3 with two distinct reference frames : a physical space with coor-
dinates (x i , x2 i x3) x, and a reference or parameter space with coordinates (j,

	

e3 )
In the parameter space we consider the open cube IC = (-1, 1) d , d = 3 with vertices
e7 = (a, /3, 'y), a, /3, -y = ±1 . In the physical space we consider a convex, open hexa-
hedron 1C with vertices x'°ry = (xi , xa, x3) ; see Fig . 3 .1 . The hexahedron IC will serve as a
prototype finite element, that is, the basic building block for the finite element spaces. The
cube 1C will be its reference element.

In addition to one-to-one mappings between IC and k, we will also consider mappings
between the surfaces and the edges of the two elements . Suchface and edge parametrizations
are useful when one wants to compute surface and line integrals on IC . The need to compute
such integrals rarely occurs in nodal finite elements where degrees of freedom are located
at the vertices . However, here we are concerned with finite element spaces where degrees
of freedom are fluxes and circulations of vector fields which naturally leads to evaluation of
surface and line integrals .

15



K K 

Figure 3.1. A hexahedron and its reference element 

Directional and nodal bases on k. 
directional basis functions defined on K by 

Central to all further developments will be the set of 

1 
(3.12) & ( E )  = i(l + a & ) ;  i = 1,. . . , 3 ;  a = +l. 

Since the upper index of these functions is either 1 or -1, for simplicity we write 4; or 4; 
whenever its value is fixed. Each & is linear polynomial in ti and is constant on the plane 
& = const. This plane is perpendicular to the i-th coordinate direction in the reference space. 
In particular, & = 1 on = -sign(a). Therefore, directional 
basis functions do not form a nodal basis. However, their products can be used to describe the 
nodes fi, edges L?, faces 

= sign(a) and & = 0 on 

and the cube K itself as follows3: 

(3.13) 

(3.14) 2 = { c E K I 4 q ~ f = l ; a , , O = i l ;  i , j = l ! 2 , 3 ; z < j }  

(3.15) F = { E E K ~ ~ = l ; a = + l ; i = l , 2 , 3 }  
(3.16) 

fi = {c E kl4:$f& = l;a,L?,r= f l ;  i , j  = 1 ,2 ,3 ;  i < j < I C . }  
^ ^  

K = { E  E @ I O  < 0, ^a  dj4, ,  ^ P  ^Y < 1) 

Individual edges and faces will be denoted by &s3 and y:, respectively. We will not change 
our notation for the nodes to E$' because there's only one permutation of 1,2 and 3 in (3.13). 
Intersection of two faces determines an edge according to 

(3.17) 

and intersection of three faces determines a node: 

(3.18) 

'The barycentrics A, have similar property: the set A, = 0 describes a face of a tetrahedral, AJ, = 0 gives 
an edge and A,A,Ak = 0 is a vertex. The tetrahedron itself is described by 0 < A,A,Ak < 1. 
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Taking intersections of two faces at a time in (3 .18) gives the three edges

= ~a n J ; E~k = Tf n . ; and eka = n

that share aa7 . Using the directional reference basis (3 .12) we define eight other functions as
follows

(3.19)

These functions belong to the space Q 1 O of all trilinear polynomials . If

	

is one of the
vertices of K it is easy to see that

(3.20)

	

Na~7 (S ttµv ) = Sa~cs (3/~~yv,

i .e ., Naa7 vanishes on all but one of the vertices of the reference cube . Thus, (3.19) form a
local nodal basis on K.

Parametrizations of K. Parametrization of K is a one-to-one mapping F : K K. Such
a mapping can be constructed in the following manner : Given a hexahedral IC with vertices
xaa'Y we proceed to define the function

(3 .21)

	

FK() _ > xaa7ATaa7()•

a,a>7

This function maps the vertex wary of K into the vertex xa07 of K . Moreover, it can be shown
that F,c is the unique invertible mapping K

	

K with an inverse Gk , such that

(3.22)

	

FK (ey) =x''37 and Gk (x''37 ) = wary .

As a result, FK is the desired parametrization of K.
In what follows, the subscript IC will be dropped and we will simply write F and G. The

coordinate functions of these mappings will be denoted by C3 and FZ , respectively. From
(3.21) it is not hard to see that F belongs to Q 1 O x Q 1 O x Q1 () so that each coordinate
function Fz is a trilinear polynomial . The explicit form of these polynomials is given by

(3.23)

	

FF O

	

Ci
st

tl e23
u,s,t=o,1

G? 11 [
123 + G? to C

1e2 + G?O1 C1 3 +
Go11 C23 +

CZo%-1 + Colo 2 + Cool 3 + C000

Naa7O = ~1O~~O~3O
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The coefficients of each F2 can be expressed in terms of the vertex coordinates xaO"Y of K.
Collecting like terms in (3 .21) we find that

crust

	

a'11 13 7 t xa(37

a,13,'y=±1

From (3 .23) it is clear that unless K is a parallelogram, F is not an affine mapping and G is
not a polynomial function.

Directional and nodal bases on K. A composition of G with the directional basis (3 .12)
gives rise to directional basis functions

(3.24)

	

07(x ) = ( ~ ia o G)(x) = 2 (1 + aGi (x)) ; i = 1, . . . , 3

defined on K. We also note for further use the identity

V0a = 2-OGi.

The directional basis (3 .24) gives a systematic description of the nodes N, edges E, and faces
.F of K, and K itself:

(3 .25) N = {x E ICI 070/10'k = 1 ; a, 0, -y = ±1 ; i, j = 1, 2, 3; i < j < k .}
(3 .26) E {x E

	

074 = 1 ; a, /3 = ±1 ; i, j = 1, 2, 3 ; i < j}
(3 .27) ,F = {xEK0a=1;a=+1 ; i=1,2,3}
(3 .28) IC = {xER3 1 0<0`40Z' < 1}.

Individual edges and faces will be denoted by E' j '3 and Tic' respectively. For the nodes, edges
and faces on K we have relations identical to (3 .17) and (3.18).

A nodal basis on IC is derived in the same manner as the directional basis in (3 .24) but now
the composition is between G and the functions (3 .19):

(3.29)

	

N07 (x ) _ (N-

	

o G) (x) .

Parametrization of faces and edges . Consider first parametrization of the surfaces in K.
Since F maps the reference face Aa into the face ~a of K, parametrization of .Fia is simply
the restriction of F to the reference face. The ensuing parametrization function is a R2 1---' R3
mapping given by

(3.30)
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The coordinate functions of this mapping are the polynomials (3 .23) with the e i th reference
variable set to +1 or -1 . Therefore, face parametrization is by bilinear polynomials in e j and

If 1C is a parallelepiped, these polynomials simplify to an affine mapping.
Parametrization of edges can be obtained in the same manner . First we note that the F

maps the reference edge

	

to the edge Ef of IC . As a result, parametrization of this edge is

available by restriction of F to E''?'.0 which gives the R H R3 mapping

(3 .31)

	

E ~O = F (M = a ;~ =

The coordinate functions of the edge parametrization are the polynomials (3 .23) in which e ith
and eith reference variables are set to +1 or -1 . These functions are linear polynomials in k .

Algebraic properties . We recall the standard definitions of the Jacobian matrices

aF1 aF1 0F1 OGl aGl OG 1/
a 1 ae2 ae3 /

	

axi ax2 aX3

aF2 8F2 8F2 aG2 802 aG2
JF = ail a2 a3 and JG = axl ax2 ax3

0F3 8F3 aF3 aG3 0G3 aG3
afl ae2 a3 J \ ax, ax 2 ax 3 J

for F and G, respectively . JF () and JG (x) are linear maps in R3 which are invertible for
every E IC and x E IC . The transpose gradients of the coordinate mappings Fi and G;
form the rows of the two Jacobians . The columns of JF will play special role in all further
developments so we denote them by Vi .

Differentiation of the equation (G o F)(e) = gives the identity JG JF = I. In terms of
dot products between the rows of JG and the columns of JF this identity is equivalent to

	

(3 .32)

	

VGA •V =Sid , i,j = 1,2,3.

Thus, {V} and {VG i } form a base and reciprocal sets of vectors . Using Cramer's rule, the
identities

detJF =(V xVj)•Vk , detJG =(VG i xVGA )•VG k =(det JF ) -i

and (3.32), we obtain the following relations:

1

	

(3.33)

	

VGi
= det JF (V

; x Vk) and V = det JF (VGj x VGk );

where (ijk) is a cyclic permutation of (1, 2, 3) . Another useful identity that follows from
(3.33) is

1
VGi x VGA = det JF Vk

(3.34)
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where (ijk) is again an even permutation of the indices 1, 2, 3.
Considered as R3 R3 functions, the edge and face parametrizations I and L iar are

degenerate mappings . Their Jacobians can be expressed in terms of the vectors Vi that form
the columns of JF . For example,

JF =(Vi V2 V3 ) ; Jcl 3a=(Vi V2 0) ; Jaa=(V 0 0).E
23

Volume, surface and line integrals on K. Let f (x) denote a real valued, continuous scalar
function defined on K . We will need to evaluate integrals of such functions on K as well as
on its faces and edges . These integrals can be computed on the reference element K using the
appropriate parametrization . For K the parametrization is given by F in (3 .21) and

ff(x)dx

	

f ( f oF)()ldetJF lde

(3.35)

	

ff1 (f o F) () V• (v.7 x Vk) d i 2 3
i

	

1

	

1

Parametrization of a face ~a is provided by the function 1a . In view of (3 .30), the standard
definition of a surface integral ; see [27, p .322], specializes to

(3 .36)

f f(x)dS = f(fo)()

	

. x Vkde k

Lf [(foF)( k .

We can also specialize the standard definition of a path integral ; see [27, p .282] to integrals
along the edges of K. Parametrization of an edge E'1 0 is given by the mapping Ea (), and in
view of (3 .31)

ff(x)dl = f(f oE )() Vk d k

(3.37)

	

[(Jo F )()Il Vkll

	

d k•

In addition to the above integrals, we will also need to compute the integrals

J f(x) n(x)dS and

	

f(x) t(x)dl

giving the flux and circulation of a vector field across faces and along edges of K, respectively.
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To compute the flux of f across .Fia, note that ,4 = 1 on this face and, as a result, VcL is
normal at every point of the surface J . Since Vqa = (a/2)VGi, the vector

VGi
n(x)

_

11 VG iil

defines a unit normal to J . To apply (3 .36) we must find the image of this vector on K under
the face parametrization 'a . From (3.33) it follows that

(3.39)

	

(no~a)O = [(V x Vk)/IIyj X Vk11L
=a

and so the flux of f is given by

J f(x) n(x)dS =

(3 .40)

A unit tangential vector for the edge E co can be determined by observing that V0 and

areare normal to the two faces which intersect at this edge( see (3 .17)) . As a result, the
vector

VGi x VG;
t

_
11 oGi x VG; 11

is tangential to

	

and has unit length . To compute the circulation of f according to (3 .37) it
is necessary to find the image oft on the reference element. Using (3 .33) in (3 .41) shows that

(3 .42)

	

(t o E ~)( ) = [Vk/H Vk]11
z =ak= /3

As a result, circulation of f along E ~~ is given by

f(x) • t(x)dl

	

f (f o E za~)(e) • (t o Ea3)()11Vk11d k

f''

	

c.' 	 	 Vk

a3f3(f
o E z )O

11 Vk11 1Vk11dek

1

(3.43)

	

_ f [(f o F)() . Vk ] —

	

d k .

(3.38)

I (f o ~a) () ' (n o (1.7)() 11 Vj x Vk 11 d , k
-

(fora)( '	
II V, X X V

Vk

=

	

kIIIlv
X Vk11 d ; k

[(f
r1 r1

	

o F)() ' (x Vk)]
J1

	

1G=

(3 .41)
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3.2.3 The van Welij complex in R3

We now proceed to define the spaces W . These spaces are related to the sets N, E and jr of
all nodes, edges and faces on IC, and the hexahedral IC itself . As a result, characterizations of
these sets in terms of the directional basis functions in (3 .25)-(3.28) provide the guidelines for
developing bases for each space W.

The space W°. We introduce W°(IC) as the set of all functions q(x) defined on IC that
are images of trilinear polynomials defined on the reference element /C under the mapping G.
Symbolically, we write this as

(3 .44)

	

W° = {q = (q o G)(x) E Q1 (1C)}.

Unless IC is a parallelepiped, the functions in W°(IC) are not polynomials . However, each
function is still uniquely determined by its nodal values . Therefore, to describe W ° it is
sufficient to exhibit a set of nodal basis functions on IC. We have already constructed such
basis in (3 .29) by mapping the reference basis (3 .19) to IC. This is in fact the standard method
for defining affine families of finite elements and it works equally well for isoparametric nodal
spaces; see e .g., [18, p .106].

There is, however, an alternative, direct way of coming up with the same basis without
appealing to a local reference basis . It is based on the characterization of Al in (3 .25) in terms
of the directional functions Oj ' . This representation indicates that the set

(3.45)

	

Wc!1:7(x) = Oa(x)4(x)OZ(x), x E IC.

defines a basis on W°(1C) . Therefore, we can circumvent the reference basis and define
W°(IC) directly as

(3.46)

	

W°(K) = span {W~~ 7(x)}.

In the present case it is easy to see that

Wja7(x) = (N'' 0'7 o G) (x) = Na,h7(x)

which proves that (3 .44) and (3 .45) are equivalent to each other

A few comments are now in order. We saw that a nodal basis on IC can be defined either
by mapping a nodal basis from the reference element or by working from a characterization of
the DOF set in terms of the directional basis on IC . It turns out that the second method, namely
deriving basis functions directly from representations of nodes, edges and faces in terms of
the directional bases, is more intuitive for vector valued isoparametric spaces . Such are the
next two spaces we are about to develop . These spaces will have degrees of freedom that
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depend on the tangential and normal directions to the edges and faces of 1C . If we approach
construction of such fields by first trying to develop like fields on the reference element, the
correct form of the reference basis vectors would be very unintuitive unless 1C is a rectangular
brick. This is caused by the fact that tangential and normal vectors on 1C are mapped back
to the reference element according to (3 .42) and (3 .39), respectively. The reference element
approach also makes it more difficult to find the proper normalizations of the vector bases so
as to ensure unit fluxes and circulations . This is caused by the nonlinearity of the mapping F
between 1C and 1C.

The space W 1 . We define W 1 (K) to be the set of all vector fields v on K that are uniquely
determined by their circulations along the edges of K and which are images of certain rational
vector fields v defined on the reference element 1C . Symbolically,

(3 .47)

	

W1 (1C) _ {v = (v o G)(x)1v E R(1C)}.

We postpone the discussion of the exact form of the prototypes v until after an explicit basis
for W 1 is derived. Since E is the set of all degrees of freedom (DOF) for W 1 (1C), to describe
this space we need to exhibit a set of vector fields whose circulations are zero along all but
one of the edges. These fields will provide the basis forW. An intuitive way of developing
such basis directly on 1C was first suggested by van Welij in [37] . Here we formalize the
original method of van Welij in a manner that is consistent with our goal of developing an
exact sequence . For this purpose we derive the basis starting from the edge characterization
(3.26) in terms of directional bases . To illustrate the main idea consider the edge

E3+= {xE1CIO2 (x)O 3 (x)=1}.

We seek a vector field with unit circulation along E23+ and whose tangential component is zero
along all other edges . The edge representation in (3 .26) suggests to consider

W3+= 02(x)03(x )v

where v is a vector field to be determined . The circulation of this function is zero along the
three "parallel" edges q- , E23+ and Eas where either 02 = 0 or 03 = 0 . The choice of
v will lead to zero circulations along the remaining eight edges . These edges frame the two
faces .F1 = {x E 1C= 1} pierced by E . On each face G 1 = const and therefore,
the vector VG 1 has no tangential component along these edges . However, for nondegenerate
1C this vector will have a tangential component along 8 23+ . The same is true for —VG 1 and
we can take either one of these two vectors for v . Since \~i = (ci/2)VG 1 , the orientation
choice can be accounted for by setting v = Vqi so that

W3+- Y2Y3 V 1•
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Using the same argument for the remaining faces we find that

(3 .48)

	

W 1 (1C) = span {W~0 (x)}, W3 =

where -y is fixed and represents +1 or -1 . The number of distinct basis functions in (3 .48) is
exactly twelve . The choice of -y determines the orientation of the vector field along a given
edge but does not change the number of independent basis functions . The choice of V~k as
a direction field for Wct is not incidental . One can argue that a better choice would be the
unit tangent defined in (3 .41). However, unless IC is a rectangular brick, this field will have a
nonzero tangential component along the edges of the faces pierced by

By changing variables in WV we can find its prototype on the reference element 1C . Using
(3.33) in (3 .48) gives the twelve vector fields

(3.49)

	

W j~() = ,] 0 F)() = 2detJFO(W()(V x V~)

defined on 1C . Their span forms the prototype space 1N 1 (1C) containing the preimages v of
the functions in W 1 (1C) . It is clear that we could have defined W 1 (1C) starting from the basis
(3.49) and deriving (3 .48) by mapping this basis to 1C . We see that there's a striking difference
between the types of functions in W l (1C) and in Q 1 (IC), which was the prototype for W°(K).
It is clear that unless IC is a rectangular brick (so that det JF = const) the functions in W I (IC)
are not polynomials but rational functions.

Let us now use (3 .49) to prove that W°t indeed have unit circulation along E~'° (their
circulation along all other edges is zero by virtue of their construction!) . By the definition of
the path integral (3 .37)

f W.''13 (x) t(x)dl = f (W~° o E 3)O . (t o E P)OIl VkUI dg k

7

where t is the vector defined in (3.41). To complete the change of variables, recall that
parametrization of edges in (3 .31) is obtained by restriction of two of the reference variables.
As a result, restricted to an edge, (3 .49) specializes to

(H
o E r)O _ [(Wicf o F)() ]

	

2det JF (Vi x Vi).

The last identity holds because

	

= 1 along Ef . In combination with (3 .42)

y(V xV) VkIap 2det JF

	

II Vk Vk
d k

1 'y(VxV) .Vkd
ekf 1

	

2det

F
JF

1 -ydetJ

	

ry 1

d k
J_ l 2detJF2J_ 1

Wicf (x) t(x)dlfop
7
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K 

, .*v 

Figure 3.2. Vector fields with nonzero normal component across 
a face 

Equation (3.49) also shows why it is more intuitive to develop the vector bases directly on 
IC. Indeed, on a rectangular reference element, V& is collinear with all edges perpendicular 
to the face = 1. As a result, it is tempting to define the basis function for the edge &GR as 

& ( S ) # ( W & ( S ) .  

Using relations symmetric to (3.32) and (3.33) shows that mapping this vector field back to IC 
gives 

where U, denote the columns of JG. Except for the trivial cases of rectangular bricks this will 

dF(x)4f(x)(uz x u~)/detJG 

not give a function with the desired circulation property on IC. 

The space W2. We define W'(IC) to be the set of all vector fields that are uniquely deter- 
mined by their fluxes across the faces of IC and which are images of certain rational vector 
fields i. defined on k, i.e., 

(3.50) W2(IC) = {v = (i. o G)(x)li. E R ( k ) }  

As before, we postpone the discussion on the exact nature of the prototype fields until after an 
explicit basis for W2(IC) is produced. 

The set of all degrees of freedom for W'(1i) is represented by the set F of all faces on IC. 
Therefore, to describe W2(IC) it is necessary to exhibit basis functions which have unit flux 

25 



across one of the faces and zero flux across all other faces . Again, we make no attempts to
find and map suitable prototypes from the reference element, instead we use the face charac-
terization (3 .27) to develop the desired fields directly on 1C . To illustrate this process, consider
the face .FP = {x E 1C~Q5i (x) = 1} of 1C . Here we need a field with a unit flux across this
face and whose normal component is zero across all other faces of 1C . The face description in
terms of the directional basis is again the clue that prompts us to seek this field in the form

Wi = (x)v

This choice ensures that Wl is zero on the opposite face J rj . To make the flux of this function
zero on the remaining four faces .F2 and .F31 we seek v that is tangential to these faces and
has a component in the direction of VO1 (the normal to .Fi ) . To find such a v, note that VG 2
is normal to .F2 and VG3 - to .F3. Therefore, the vector V G2 x VG 3 is tangential at all points
of these four faces ; see Fig . 3 .2 . At the same time, if 1C is convex,

det JG = (VG2 x VG3) ~G1 � 0

which means that VG 2 x VG3 has a nonzero component in the direction of V ci. We account
for the possible orientation choices by setting v = Vqa x VO3. The resulting vector field

Wi =

	

x vos)

where 13 and -y are fixed, has the desired property and

	

(3.51)

	

W2 (1C) = span {Wa(x)}, WZa = (0O'3 x oak)

The number of basis functions in (3 .51) is six . The two indices /3 and -y determine the orien-
tation of the vector basis function . It is convenient to choose these so that the vector field is
outward pointing.

Changing variables in (3 .51) gives the six fields

	

(3 .52)

	

l ( ) = (Wza o F)() = 4det JF 'a(')V

defined on the reference element . These fields are the prototypes of the basis functions (3 .51).
Their span forms the space W 2 (K) which contains preimages of all functions in W 2 (K) . It is
also obvious that W 2 (K) contains rational functions unless 1C is a rectangular brick.

By construction, the basis function Wia has zero flux on all faces except .FZa . Using (3 .52)
we can show that the flux of WZa across this face is one. By the definition of the surface
integral (3 .36)

f

	

x) •n(x)dS= f (Wao~a)() .(no~a)( )~~V xVkIl dejek,
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where n is the unit normal defined in (3 .38) . The parametrization in of this face is obtained
from F by setting ei = a . Since icba = 1 on .F formula (3 .52) specializes to

( 70~a)(

	

[(a 0 F)()]
_a =-
	

~ 4det
	

1 JF
V.

=

From (3 .39) and this expression we see that

ia=
	 	 V (x Vk)

	

Vk 11 Gkfw(x) . n(x)ds
.F a 4detJF IIVj x Vk

II V x

1

=

	

f f G.;ek =
4

	

1

The space W 3 . We define W3 (1C) as the space of all scalar functions on 1C that are uniquely
determined by their total mass on 1C and which are images of a suitable class of functions
defined on 1C . We can interpret such functions as a density distribution on IC.

Functions in W3 (1C) have a single degree of freedom identified with 1C . To describe all
such functions we need a basis function which has unit total mass on IC . This basis function
must be related to the volume deformation under the mapping G and so we set

(3 .53)

	

W3 (1C) = span {WO ; WK = (ova x v ) •

where a, and ly are fixed . The choice of basis in (3 .53) is motivated by the formula

detJG =(VGi xVG;) . VG k

which implies that

1WK =

	

-(v xV )=	 detJG =detJG/8.

In a moment we will show that this is the proper normalization to obtain unit total mass.
To find the prototype of WK on a reference element we change variables in (3 .53):

WW ( ) = (WK 0 F) ( ) =

	

78det JF

This prototype is a rational function which can be interpreted as a density distribution on K.
If IC is a rectangular brick, (3 .54) corresponds to a constant density in which case we recover
the standard space Qo of zero degree polynomials . If IC is not too distorted, Qo is a good
approximation to W.

(3.54)
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Table 3 .1 . Discrete De Rham complex on a hexahedral 1C

SPACE DOF LOCATION BASIS DIMENSION

W° Oa = 1 oa 2d
(d)

=8

\

	

/W 1 ~a~a = 2d-1

	

d

d

	

1
12

w2
~a = 1 ¢(Vca x Vok)

d2d-2

	

d — 2 = 6

W3 1C VOa (Vcba x VOZ) 2d-3

	

d d 3

	

= 1

It remains to show that WK has unit mass . For this purpose we use (3 .35) and (3 .54) to
find that

	

VVic (x)dx = f(WoF)(detJF d=f 	

	

, 	 ~detJF 1d
8det JF

a/37

	

1

	

1

	

1

dk1e2e3 = aO'Y
8 -1 I 1 -1

The finite element complex on hexahedra is summarized in Table 3 .1.

Exactness of the complex )/Vi .

	

Let us now show that W 2 (1C) form an exact sequence.
Recall that for vectors fields U, V and a scalar function u

(3 .55)

	

V x (uV) = uV x V + Vu x V,

(3 .56)

	

V . (uV)=Vu•V+uV•V,

and

(3 .57)

	

V .(UxV)=V .(VxU)—U .(VxV).

From (3.57) also follows that

(3.58)

	

V (V f x Vg) = 0.

Consider first the gradients of W°(1C) functions . Using the chain rule and (3 .45)

fk

V111Zjk =
L 0aOj VOk =

	

Qk

( ijk )+

	

(ijk )+

(3.59) a/3
ij
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where summation is over cyclic permutations of (1, 2, 3) and ak = ± l depending on the

orientation choice of

	

This establishes the inclusion

(3.60)

	

0(W°(K)) c W'(K).

Consider next curls of W' (1C) functions . Using (3 .55) for W 73 0 gives

o x (oN3iqvo''k)

= qv. (
o x oak) + 4 (v

u V -akW3

The minus sign comes from the permutation (jik) while

	

and (k equal +1 depending on

the orientation of W' and Wf , respectively . This establishes the inclusion

(3 .62)

	

V x ()/V 1 (1C)) c W2 (1C).

Finally, consider divergences of VV 2 (1C) functions . From (3 .56)

0 Wi
a = v • ((vOl x v )

v (o(ex v ) + Sao • (v x v )

From (3.24) V = a/2VGi. Since VGk • (VGi x VG A ) = det JG the first term above equals

	 gdetJG .

The second term vanishes thanks to (3 .58) and we find that

(3.63)

	

V Wa =gdet JG = a,Q'TWK

This establishes the inclusion

(3 .64)

	

V • (W 2 (1c)) c W3 (K).

Change of variables. Assembly of finite element matrices requires computation of inte-
grals involving both the basis functions and their derivatives . These integrals are computed on
the reference element using standard quadrature rules which necessitates a change of variables

(3.61)
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from 1C to IC . Equations (3 .49), (3 .52) and (3.54) show the local reference bases resulting from
such a change . For convenience these formulas are collected below.

(wir o F )() = Naa7O = ~a( )~~( )~k( )

( Wic;'3 o F) ( ) = Wig0 O =

	

x
2d et JF a ( ) ~~ ( ) (V Vj )

(WaoF)O =WH O = Ode JF ( )V

(WxoF)()=WK() _ 8deet JF .

To change variables in expressions involving derivatives of the basis functions, note that the
relevant differentiation operators are gradients for W°, curls for )4) 1 and divergence for )/V 2 .
The functions from W 3 provide an approximation for L 2 (Q) and do not posses square inte-
grable derivatives . To change variables in 0WiV7 (x) we express this gradient as a sum of W 1
functions (see (3 .59)) and then use (3 .49) to obtain

(3 .65) ((vw) o F)() =

	

2detJF~a( 3 )(V x Vj).

(ijk)+

The curl of W°t is a linear combination of W 2 functions. To change the variables we use
(3 .61) and (3 .52) to find that

	

(3 .66)

	

((v x win o F)() = 4det JF
(a(7()

~k

	

—

	

(cc)/ ( ) Vj)

Lastly, for the divergence of Wia on k the change of variables gives

	

(3.67)

	

((V . Wia) o F)

	

_ 0'7
8detJF .

3.2.4 The van Welij complex in R2

In this section we develop the proper restriction of van Welij spaces to quadrilateral elements.
We show that a relation similar to the exactness in three-dimensions still exists, albeit in a form
that involves different combinations of spaces . The differences are caused by the existence of
two curl operators in 2D and the fact that "faces" and "edges" of a quadrilateral coincide . The
first two-dimensional curl is defined by embedding a scalar function into a 3D vector function
and taking the curl of the former:

	

(3 .68)

	

V x q := V x (0k) = Vq5 x k =

	

— 0,j + Ok.
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I j \  

T 

Figure 3.3. Quadrilateral Ec and its virtual hexahedral. 

The second curl operates on two-dimensional vector fields and is defined by 

(3.69) V x u := V x (uli + uj + Ok) = ( ~ 2 ~  - uly)k. 

Dropping the last term in (3.68) and identifying the result in (3.69) with the coefficient of k 
gives the definitions of the two curls: 

A vector product between two-dimensional vectors can be defined along the same lines as 

(3.70) ( :: :: ) u x v := (uli + uj) x (wl i  + wj) = det 

Given a quadrilateral element IC and a reference element k = [-1,1]*, we proceed to 
embed K into the three-dimensional virtual hexahedral 

K: = {xl(.l,52) E IC! -1 I 5 3  I I}, 

(see Fig. 3.3). The mapping F between the virtual hexahedral E and the reference element in 
3D has a third coordinate function given by x3 = F3(<) = t3 so that G3(x) = z3. The vertical 
edges of K are described by @# = 1, i, j = 1,2.  We will call these edges virtual. In terms 
of notations introduced earlier in 53.2.3 and definition (3.70) 

V,  = VG3 = k, det JF = Vl x V,. 
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As a result, (3 .33) specialize to

(3 .71)

	

\7G 1 = (V2 x k)/det JF

	

V1 = (VG 2 x k)det JF
(3.72)

	

\G 2 = (k x Vl)/det JF

	

V2 = (k x VG 1 )det JF.

Alternatively, we can write (3 .71)-(3 .72) in compact form as

(3.73)

	

VG, = (—1) 3 V3 x k and V = (—1) 3 VG3 x k.

A nodal basis on the reference quadrilateral can be defined by restricting the argument of Naafi'
in (3 .19) to (1) . Then 03(e1, 2, 1) = 1 and

(3 .74)

	

Nab*(1, 2) := Na"( 1 , e2, 1 ) _

	

e2).

The third coordinate can be dropped because the two directional functions in (3 .74) are inde-
pendent of 3 . In what follows we will use and x to denote points in both two and three-
dimensions, with the actual dimension being dependent on the context.

We now proceed to develop the proper restrictions of the van Welij complex in two-
dimensions . This can be accomplished by considering either the top or the bottom faces of the
virtual element . Here we choose to work with the top face

	

= 1.

The nodal space w° in 2D. Restriction of the nodal space W°(1C) is straightforward and
is accomplished by setting x = (x i , x 2 , 1) in (3 .45) . The two dimensional basis set is

W013*

	

t* (x)

	

Wjk0'r ((x 1, x2, 1 )
(3.75)

	

= Oa((x1, x2, 1)0((x1, x2, 1 ) = 0a(x)O~(x);

for i, j = 1, 2 and x E K.

The edge space W' in 2D. To define the restriction of the edge element space W 1 (IC) we
consider the four edges of the top face c3 = 1 . Let us fix the edge E23+ . Note that this edge
is not virtual and is parallel to one of the sides of the quadrilateral IC . The basis function for
E23

++ is

W2+= Y2Y3 oY1
Choosing x = (x 1 , x 2 , 1) sets

	

equal to 1 and gives the restriction of W23+ :

W2 * (x)	W 23+ (x1, x2, 1 ) = q 2 (x) VO1(x ) x E IC.

Thus, in two-dimensions there are four "edge" basis functions and

(3.76)

	

W 1 (1C) = span {Wa*(x)}, Wia* = qV01.5 = /2~apG~- .
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The face space W 2 in 2D. To find the proper restriction of W 2 consider the four faces
perpendicular to the plane x 3 = 0 where the original quadrilateral is located . One of these
faces is .Fj and its associated basis function is

Wi = of (o(4 x 0~3) = (—1) 2 2 (pia
The basis function for the adjacent face .7'2 is

W2 = (0,3 x vO
i
) = ( —1 ) 1 2 (0 1

Setting x = (x i , x2i 1) restricts W2 and W2 to planar vector fields . However, both fields are
normalized by area, while the proper normalization for a planar restriction would be by the
length of the quadrilateral side . Thus, we multiply the planar vector fields by 2 (the length of
the virtual edge) and use the fact that 03 = k/2 to find the proper restriction:

W2 (K) = span {W'},

	

(3.77)

	

Wa = (—1)'O (VQ~~ x k) = (- 12)30 Oa (VGA x k);

The density space W . To find the restriction of the basis function in (3 .53) we set x
(x i , x 2 , 1) and use the fact that VG3 = k. This gives

WK (x i , x2, 1 ) = (V(xix2,1) x

	

x2,1)) • k/2.

The right hand side in this equation is precisely the definition of the two-dimensional vector
product (3 .70) . After normalizing by the length of the virtual edge,

	

(3 .78)

	

WK (x) = Vpi (x) x Vg(x) = '@VGi x VG 2 x E K.

Since the vector product (3 .70) is identified with a constant, this function is consistent with its
three-dimensional prototype . Using (3 .71)-(3.72) we find that

(

	

=
0(V2xk)x(kxVi) — cr~3(V1 x V2) —_	 coWK 0F)()

	

4det JF2,

	

4det JF

	

4det JF

The last identity follows from det JF = Vi X V2 , and gives the local reference element proto-
type of WK .

i

	

j.
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Local reference bases . To find the prototypes of the two-dimensional restrictions on the
reference square 1C, we can develop formulas analogous to (3 .49)-(3 .52). Using (3 .71)-(3 .72),
or (3 .73) to change the variables gives

(3 .79)

(3 .80)

(3.81)

(3.82)

(W~~* o F) ( ) =

	

=(~) =

(Wig* o F) () = N3a* () =

(Wa o F) (e) = Wza (S~) =

(WKoF)(e)=WKO =

(-1)' '3 9( )(vi x k)
2det JF

2det JF
~aO V

cx,Q

4det JF

Exactness in two-dimensions . The spaces defined in this section manage so far to recover
the essential properties of their three-dimensional prototypes . For example, w°, W 1 and W 2

are H(Q, grad ), H(-2Z curl) and H(Q, div) conforming spaces, respectively . However, at
first glance it seems that the critical exactness property has been lost . We still have that

0 (~a(x)(b~( ))
= Oa (x) V (x) + V (x)4(x )

and
(( —1 ) 1 0

2

(VGj x k)) _ (—1)1a/3
vGi

x vG,

which verify the inclusions

VW°CW 1 and V•W 2 CW3

However, neither one of the two curl operators can possibly verify the inclusion V x W 1 C
W 2 . The curl in (3 .69) gives a scalar function, while the curl in (3 .68) cannot even be applied
to functions in W 1 .

This confusing situation can be avoided if the curl relation is sought by restriction of the
existing relations in three-dimensions, rather than directly . Since the curl seems to be the
culprit here we take as a starting point the edge element space W 1 on the virtual hexahedral
1C . The edges on this element can be divided into two sets : the four edges on the top face that
are parallel with the edges of the quadrilateral 1C:

~13

	

F23+

	

y
13+

	

*F23+

and the four virtual edges passing through the vertices of 1C:

+

	

++.
~12

	

t12

	

~12

	

~12 7
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The basis functions for the first set are

W23
a+ —

These functions were used to define the two-dimensional edge element. The basis functions

ij=1 or 2.

for the four virtual edges are

(

35

i j=1 or 2.

These functions were not used in the definition of W I (k), however they will be handy now.
Let us compute their curls . Since V = \G3 /2 = k/2,

"

	

2
(OW) k 2(Wj*3*)k, i, j = 1,2

where

	

are the 2D nodal basis functions from (3 .75). As a result,

v x Wi3 =
2D

x (wic)

2
(09(VOq x k

) + O. (VO9 x k) )

To interpret this relation in two dimensions, note that V x (Wi.'';':*k) coincides with the defi-

nition (3.68) of the first curl operator in 2D applied to the scalar function WV * k, while from
(3 .77) it is clear that

q (~~a x k) = (—1) 3 Wa and 03(VO9 x k) =

Therefore, the curls of virtual edge basis lead to a relation between the nodal space W° and
the face space W 2 :

(3 .83)

Let us now compute the curls of the vector fields representing the basis functions of the first
set restricted to the top face . On this face 03 = 1 so that (3 .61) gives

Vx[W23]

	

= V x(v) = V,g xV
3 -

The term on the right hand side is the definition of the 2D density function (3 .78). As far

as V x (qVc5) is concerned, from (3 .69) and (3.76) we can conclude that this expression

V x W90 * _ ±2(Wa W~) . i ~ j .



Figure 3 .4 . Orientation choice for edge and face elements on 1C.

represents curl of an edge basis function in 2D . As a result, curls of the parallel edges lead to
a relation between the edge space W' and the density space W 3 according to:

(3.84)

	

~x Wi =WK .

Therefore, in 2D the exactness still exists, but in a modified form with two separate curl
relations which "skip" a space . This phenomena can be explained by realizing that the space
W°(1C) in actuality represents restrictions of two different three-dimensional spaces . First, it
is a restriction of the nodal space W°(1C) which leads to the relation VW° C W 1 . However,
we can also consider W°(1C) as representing restrictions of the edge basis functions for the
four virtual edges . This leads to the first of the two curl relations in two dimensions!

Orientation of )/V i (1C) and W2 (1C). The vector fields defined by (3 .76) and (3 .77) involve
an implicit choice of orientation by virtue of the index O. Orientation is important when
several elements are combined together and one has to match the vector fields on the shared
edges and faces . For the edge elements (3.77) we adopt an orientation in which the four edges

are traversed in a counterclockwise direction, and for the face elements (3 .77) we adopt
orientation in the direction of the outward normal to the face J ; see Fig . 3 .4. The sets of
oriented edge and face basis functions on 1C is summarized in Table 3 .2. In what follows we
will refer to this choice as the standard edge and face element orientation on a quadrilateral.

3.2.5 The van Welij complex on hexahedral and quadrilateral lattices

In this section we show how edge and face elements on individual elements can be combined
to form finite element spaces on hexahedral or rectangular triangulations . We also show that
the resulting edge element vector field is tangentially continuous, while the face elements lead
to a normally continuous field . The case of quadrilateral lattices is considered first to outline
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Table 3 .2 . Oriented edge and face elements on tetrahedron.

Edge/face Edge vector field Face vector field

bottom W£ = — ~a VG 1
2

~- =

	

~a ~G 1 x kI/11-
2

right WE = — ciVG2 WT = 0 VG2 x k

top W£_ og2VG 1 W~=— 1~aVG 1 xk

left W£=
I

cbiVG22
W4-=—ciVG2 xk

2

Figure 3 .5 . Standard Th and the sets E, ,T for an onented tnan-

gulation Th .

the basic ideas in a relatively simpler setting. Then we proceed to define the finite elements
on hexahedral lattices . For the nodal space W° and the space W3 forming the finite element
spaces is standard and here we do not take time to discuss their construction.

The complex on quadrilateral lattice To illustrate the process of joining together edge
and face vector fields on several elements it suffices to consider a simple triangulation Th

consisting of four quadrilaterals 1C i , i = 1, . . . , 4 ; see Fig. 3 .5. On each quadrilateral there are
the edge vector fields W l (1Ci) and the face vector fields W 2 (1C i ) which are assumed to have
the standard orientation; see Fig . 3 .4. To match the vector fields defined on elements )C i it is
necessary to introduce orientation for the edges E and the faces .F of Th . In two-dimensions
edges and faces coincide with the sides of the quadrilaterals . Therefore, edge orientation
is understood as choosing an ordering of the side's endpoints, i .e ., a direction in which to
traverse the edge . Face orientation, in contrast, is understood as choosing a normal direction

to the side of the quadrilateral . This gives rise to an oriented triangulation Th with edges and

faces denoted by E and ,F, respectively. An example of Th and a standard triangulation Th
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Figure 3.6 . Formation of an edge basis function from local vector
fields.

is shown on Fig . 3 .5 . The orientation on Th is global and should not be confused with the
standard element orientation of Fig .3.4 which is defined locally.

The edge element space . To define W t (Th ) consider the set E of all edges in Th . Each
edge is associated with a degree of freedom 4 and a basis function Wi such that

~

(3.85)

It is clear that the support of W
E
- consists of all elements that share the edge S i ; in two

Z
dimensions there are at most two such quadrilaterals . Let us exhibit a basis function for the

edge Es= K 1 fl K 4 shared by K 1 and K 4 . The locally oriented vector field on K4 associated
with this edge is W£; for K 1 this field is represented by M . Because these fields follow the

local orientation, along Es they run in opposite directions ; see Fig. 3 .6 . To combine the two

local fields into one, tangentially continuous field defined on 1 C I U K4 , they must be oriented

according to the orientation on Es . The vector field on K4 is already aligned with the edge.
To align the field on /CI the appropriate local definition of the vector function is multiplied by
-1 . This process is illustrated on Fig . 3 .6. The resulting edge basis function is

W£ for x E K 4

WE 3

	

—WE for x E K l

4 When boundary conditions are added, some degrees of freedom will be removed ; we discuss boundary
conditions later.

(3 .86)
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Figure 3 .7 . Formation of a face basis function from local vector
fields.

The edge element space W' (Th) is now completely defined by

(3.87) W 1 (Th ) = span {W£ s E SEE}.

Clearly, dim W' (Th) = dim i and

	

(3 .88)

	

W l (Th) C H(Q, curl).

The face element space . To define W2 ( .F) we proceed in a similar fashion and consider

the set J of all oriented faces in Th . Each face has a basis function W-. such that
-~i

I W I •ndS=Si
.F;

Support of the basis function contains all elements that share the face ; in two dimensions there
are at most two such quadrilaterals.

Let us develop a basis function for the face ,r s= K l nK4 shared by K l and K 4 . The locally
oriented vector fields on K 1 and K 4 associated with this edge are W~ and Wes, respectively.

The normal components of these fields across .F s run in opposite directions ; see Fig . 3 .7 . The

field on K 1 is aligned with the orientation on the face Es ; thus now it is necessary to multiply
by -1 the field on K4 ; see Fig . 3 .7 . The resulting basis function on K 1 U K 4 is

—W~ for x E K4
	(3.89)

	

W —
s

	

W- for x E K 1
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Basis functions for all remaining faces can be defined in a similar manner. The face element
space W2 (Th ) is now completely determined by

	

(3 .90)

	

W2 (Th) = span {1/17 , ,FsE,F}.

Dimension of W 2 ( .F) equals the number of faces and

	

(3.91)

	

W2 (Th) C H(S2, div ).

Exactness on tetrahedral lattices . For one element, the exactness relation (3 .83) follows
by a direct differentiation of the nodal basis function . To develop analogous relation for a gen-
eral tetrahedral lattice we assume that the edges and the faces of the lattice are endowed with

orientation and form an oriented triangulation Th . Let Ns denote a node in Th . For simplicity,
assume that NS is shared by the four elements Ki as in Fig . 3 .5. These four elements form the
support of the nodal basis function WNs associated with NS . The four faces emanating from
NS are

K 1 nKZ

K 2 nK3

K3 n K4

K 4 nK 1

Using the same arguments as for (3 .89) the basis functions for each face can be expressed in
terms of the local vector fields as

WS

	

-T/14-

144 forxEK 2
1 —W~ for x E K3

.Fs

.FE

.FN

.FW

E K 1
E 1C2

for x
for x

W
N

E K 4
E K 3

for x
for x

5 W~ for x
—W~

E K1
E K4
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Figure 3 .8 . Local representations of V x WN3 and face basis
functions.

Using (3 .83) on each quadrilateral gives four local relations between the local face element

vector field and the curl of the local nodal basis function :

V x Wars =

0 x WJrs W~- - Vq.

xWNs W.—W7b

V x WWv-s

	

= W~ — WW-

on K 1

on K2

on K3

on K4

Comparing the local expressions for the curl of WArs with the local expressions for the face

element basis functions we obtain the exactness relation (see Fig . 3.8)

	

(3 .92)

	

V xWj r =W

	

s —WN +WE —Ww

3.3 Example : solution of eddy current equations using face and edge
elements.

We consider the region from Section 3.1 with boundary 3Sl = FUr* . The governing equations

for the electromagnetic field in Q are given by

	

(3 .93)

	

\7 x H

	

J in Q

	

(3 .94)

	

V x E

	

— at in Q

	

(3.95)

	

0•B

	

= 0

	

inQ

	

(3.96)

	

0•J

	

= 0

	

inQ

	

(3.97)

	

B

	

µH

	

(3.98)

	

J

	

crE
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Initial values of the magnetic flux density B are required to satisfy 3 .95. System (3 .93)-(3 .98)
must be closed by choosing appropriate boundary conditions . Here we consider

	

(3 .99)

	

n x Hb = 0 and n•Eb =0 on I'

	

(3.100)

	

n Bb = 0 and n x E b = 0 on I'*

To make the best use of the van Welij complex we must choose wisely the two primary fields
that will be approximated. This choice is governed by the exactness property of the finite
element complex, i .e., the inclusion V x (W 1 ) c W 2 . This inclusion and (3 .94) suggest the
use of edge elements to approximate the electric field E and face elements to represent the
magnetic flux density B . The other two variables can be eliminated from (3 .93) with the help
of (3 .97)-(3.98). The resulting system in terms of E and B is

1
Vx—B

	

uE in S-2
µ

V x E =

	

inin S2

To discretize (3 .101)-(3 .102) we assume the representations

	

(3 .104)

	

Bh = L (I).W ;

	(3.105)

	

Eh =

	

E

e

This choice makes it possible to satisfy exactly (after the time derivative is approximated by
a finite difference) Eq . (3 .102) . However, the finite element representations (3 .104)-(3 .105)
cannot be substituted directly into the first equation because face elements do not have well-
defined curls . Thus, we proceed to rewrite (3 .101) in weak form by integrating by parts the
identity

f E • V x B dQ = [ aE • EdS2 VE E H(Q, curl ),
o

	

µ

	

o
The ensuing variational equation

	

(3.106)

	

f
1µ

	

Jr
• V x EdQ — (Hb x n) • EdF = f aE • EdS2 VE,

~

	

o

(3 .101)

(3 .102)

(3 .103)
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where Hb is the (given) magnetic field on the boundary, can now be used in conjunction with
the representations (3 .104)-(3.105).

Let us now develop the fully discrete approximation of the Maxwell's equations (3 .101)-
(3 .102) . We replace the time derivative in (3 .102) by a difference and insert the finite element
approximations of E and B into the resulting equation and (3 .106) . This gives the algebraic
system

V x En+lh

Because the curl of Eh +l belongs to W 2 the second equation can be solved exactly . Substitut-
ing

Bh+l = Bh — AtV x Eh+1

into (3 .107) gives an algebraic equation only in terms of Eh +l :

aEh+1 . Eh
+ At (o x Eh+1 ) . (0 x Eh )dQ

(3 .109)

	

—Bh (o x Eh) do — J (Hb x n) . Ehdl' VEh EW' .

The resulting scheme has some very attractive computational properties . It ensures that the
approximate magnetic flux density is divergenceless provided VBh = 0 . This can be accom-
plished, for example, by defining B° = V x Ah, where A° is a vector potential representation
in the edge element space W.

For the edge elements considered here, tangential E are essential boundary conditions and
tangential H are natural boundary conditions . The approach listed above has been described
in the time domain electromagnetics context in [38] . A description of an hp-adaptive approach
using H(Q, curl) conforming elements is given in [33].

4 Free-form surface design

Sharp interface inversion uses a reduced order model . The conductivity is approximated by
a piecewise constant in bulk regions . A triangulation represents the two dimensional surface
between regions . The objective of the inversion is to optimize the location of the interface. The
optimization uses shape derivatives . The computational complexity is sensitive to the number
of vertices in the interface . The problem is addressed in Computer Graphics by associated
a curvilinear surfaces to a coarse triangulation, a technique called Free-form surface design

(3.107)f 1 Bh+1 . V x EhdQ — f(Hb x n) • Ehdl' = f QE 1 EdQ b'Eh E
f-t

	

Bn+1 — B nh

	

h(3.108)
At
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(FFSD) [35, 36] . Spline surfaces of order less than five are impossible for general unstructured
surface triangulations.

The papers of FFSD are a decade old, due to the fact that the original developers left
academia for the private sector . Our implementation is incomplete . We have not yet devel-
oped robust and efficient algorithms to generate local second order (discussed in section 4 .3).
Instead, we moved on (in section 5) to inversion methods based directly on the triangulation.

FFSD is an r-adaptive method; the vertices move to fair the associated surface . The ob-
jective includes surface the triangulation quality, measured in terms of the angles between ele-
ment normals . By adding terms to the cost functional minimized during surfaced fairing, other
tasks may be accomplished simultaneously, such as improving the mesh quality . In section 4 .1
we propose that certain numerically stable algorithms be applied in the mesh optimization.

The sharp interface identification methods discussed in the next section are implemented
using the GNU Triangulated Surface Library, GTS . This section describes the tools that would
need to be developed to make the sharp interface tools, described in the next section, indepen-
dent of GTS. That task would be simplified by using a package such as Sandia's UTILIB.

FFSD methods locally reconstruct the interface surface . The original applications of FFSD
constrain the overhead cost per image much more severely than in sharp interface inversion.
Improvement algorithms are presented in section 4 .2.

Local shape reconstruction tools associate a tangent space and and normal space to the
surface, and also support some decimation (surface coarsening) [36] . The surface is invariant
under deformations of the nodes along the tangent space . The tools also provide other infor-
mation needed to associate a surface to the triangulation . Local and global interpolation are
supported . Local interpolation determines the quadratic Bezier surface over an element . The
data for the local problem is, at each vertex, a normal vector and an angle . The global interpo-
lation tool is intended for use by the customer in visualizing this interface, and determines the
global C' surface [3].

In section 4 .2.2, an improved algorithm for local coordinate fitting is presented . Further-
more the local shape reconstruction tools support surface fairing — the motion of the nodes
to reduce curvature as described in section 4 .2 .3 . The local shape reconstruction tools support
surface decimation based on small angles . A second, more powerful surface decimation tool
based on pair (generalization of edge) contraction is reviewed in section 4 .2 .5.

Ideas from linear algebra are emphasized, along with some special notation . The symbol
M(n, m) denotes the set of n by m matrices with real coefficients . The subset of orthogonal
matrices in M(n, n) is denoted by 0(n), and the subset of matrices in 0(n) with determinant
one is denoted by SO(n) .
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4.1 Adaptive element quality

A model of element quality is developed for addition to the fairing objective function with
improved numerical stability properties.

The quality of a simplicial finite element is twice the ratio of the in radius to the cir-
cumradius [11, 32] . The measure is popular in the analysis of finite element methods, but
less popular in the meshing community. Formulas for element quality as a function of edge
lengths have superior numerical stability properties, compared to to formulas depending on
vertex locations . As we shall now show, the nontrivial step is to compute the triangle surface
area, S.

a

	

a
Figure 4 .1 . Annotated illustrations of poor quality obtuse
(left) and acute (right) triangular finite elements are shown.

Note that the triangle circumradius is given by L1L2L3 , where Li is the ith edge length and
S is the surface area ( page seven of [17] . The half perimeter p = Ll+22+L3 and the triangle
in radius is p . Given these quantities, mesh quality is defined as a function of each element,
q(e). One may define a flow on the nodal positions that maximizes quality using spring forces
to dz = F(z) [32] . Another choice is F = Oq(e) . Suppose that edge k is shared by elements
i and j, and has node 1 as an endpoint. On element i, global edge k is local edge m, and on
element j, global edge k is local edge n. Then add to component 1 of dz

emvgi 1 + en Oqj

q i 2

	

qj 2

A factor of is used to avoid unnecessary node drift. Saddle points may be escaped by adding
small random perturbations. From now on, we view the element quality as a function of
element edge lengths.

The gradient flow is optimal, but to understand how it improves upon the spring forces,
consider \/q in the two cases of asymptotically bad triangles : a severely obtuse triangle and
a triangle that is not severely obtuse but is severely acute, (see Figure 4 .1). The edges are
labeled so that the edge lengths are non-increasing, a > b > c.

Formulas for element quality as a function of edge lengths have superior numerical stabil-
ity properties, compared to to formulas depending on vertex locations . As we shall now show,
the nontrivial step is to compute the triangle surface area, S . The implementation involves
Heron's formula for the area of a triangle in terms of its edge lengths, or more precisely in
term of the facial differences, q = ABC/(abc),

A=—a+b+c, B=a—b+c, C=a+b—c.
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The numerically stable formula for computing facial differences is (see [24],

A = (max(b, c) — a) + min(b, c),
B = (max(a, c) — b) + min(a, c),
C = (max(a, b) — c) + min(a, b).

In the case of ordered edge lengths, C> B > c > A > 0.
In the obtuse case the result of the perturbation analysis is that to first order, V qT =

(—1, 1, 1)4/a . The spring forces are purely repulsive, but The force aa q is contractive, and
contractive forces are not used in [32] . In the acute case, to first order

VqT = (cos a, — cos a, (1 + cos2 a)/2)4/a.

The gradient flow improves on the spring forces by, in addition, moving the element towards
a right triangle, a -~ 7/2.

Similar comments extend to tetrahedral mesh refinement . If a, b, c products of lengths of
pairs of opposite edges, then the tetrahedron circumradius is

-\/(a + b + c) (a + b — c) (a — b + c) (—a + b + c)
24V

(page 10 of [17]) . And the tetrahedron in radius is

3V

S 1 + S2 + S3 + S4 '

(page 11 of [17]), where Si is the surface area of the ith face . Numerically stable formulas for
S and V in terms of edge lengths are given in [24] and [25] respectively.

4.2 Local shape reconstruction

The FFSD algorithm of [36] that associates a smooth surface to the triangulation that mini-
mizes the principal curvature . Once a fair surface is obtained, a C l piecewise polynomial inter-
polant is used . Although Nielson's implementation of a Clough-Tocher element is suggested
in [36], we prefer the Bezier form representation of the Bell triangle [3] . Re-triangulation is
discussed in the following subsections.

4.2.1 Vertex neighborhood parametrizations

In order to understand FFSD algorithms precisely enough to implement them, certain details
must be spelled out in detail . For example, in order to define the surface through a vertex
and its neighbors, an algorithm is needed to order the neighbors . Given an interior node with
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coordinates po and n neighbors, order the neighbors as follows : The first neighbor, p i , is

arbitrary . For j > 1, choose pj such that the triplet (po, p j_ 1 , pj ) are the vertices of a triangle,
until j = n.

Given a boundary node po, choose p i that is also a boundary node. If 1 < j < n, check

that pi is not a boundary node.
In the following, pn+1 = pl . For 1 < j < n, define 9; by 0 < 9j < 7r and cos(9j ) _

(Pj — Po)T (Pi+1 — Po) .
At an interior node, a = 27r/ E Oj, and at a boundary node a = 7r/ E Oj . A boundary

node with only two neighbors is a vertex . Vertices are treated differently, by interpolation of
the boundary curves.

Define 90 = 0, uo = 0, and for 1 < j < n, and let ~bj = Eo c 92 and

uj = IIP; - Po(cos(0j ), sin(0j )).

4 .2 .2 Local coordinate fitting

An algebraic function s(u) such that s(uo) = po, is fit to the data in the least squares sense;
for 1 < j < n, s(uj ) pj . In [36], five different parametrizations are used to try to minimize
the condition number of the fitting. Furthermore, each vertex is assumed to have at least five
neighbors, n > 5 . The two components of u are denoted uT = [u, v] . Then, an improved
fitting algorithm is presented.

The treatments for interior and boundary nodes differ . At an interior node, a fit of the form

b(u) T = [1, u, v, u2/2, uv, v 2 /2] is attempted . Define B in M(5, n) by

[b(u1 ), . . ., b(u )] _ [a],

	

eT = [1, . . ., 1].

Due to b(0) = e l , there exists a matrix C in M(3, 5) (to be determined next) such that
s(u) _ [po, C]b(u) . The pseudo-inverse of B, namely B + = VE -3UT , is defined in terms
of the singular value decomposition B = UEV T.

As long as B has no small singular values, for P = [p i — Po, ••, pn — Po], the least squares
solution is C = B+P . Otherwise, b(u)T = [1, u, v, (u 2 + v2)/2] is used to define B in

M(3, 3) and the similar construction determines C is M(3, 3) . Note that n > 3 at an interior

node for any surface mesh. An improved algorithm is presented below.
At a non-vertex boundary node (n > 3), a fit to b(u) T = [1, u, v, u 2 /2] is attempted.

Otherwise, the surface is fit to b(u) T = [1, u, v].
Scaling the u's so that the largest radius is one is recommended due to the following ob-

servations . While scaling the points (u's) so that minimum radius is unity often significantly
increases the condition number, we observe that scaling the points so that maximum radius
is unity never significantly increases the condition number, and sometimes significantly de-
creases the condition number.
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A more accurate and expensive way to compute the reduced basis involves a QR factor-
ization of a submatrix of matrix of left singular vectors, U. If one (or two) singular values are
relatively small, construct Q such that [U(3 : 5, 5), Q] (or [U(3 : 5, 4 : 5), Q]) is in 0(3) . For

P=
[ I

0
O QT ,

in M(4, 5) (or in M(3, 5) ), replace B with PB.

4.2.3 Surface fairing

Surface fairing refers to moving the nodes to minimize the curvature . A differential motion of
the nodes, dp, in the tangent plane, dp • n = 0, does not change the surface . Fairing a surface
changes the surface, dp • n 0. Node motions in the tangent plane are useful for optimizing
element quality. In surface fairing some nodes are held fixed, such as vertices . A nonlinear
solver that acts as a smoother on the remaining nodes (e .g. ten nonlinear conjugate gradient
iterations) to locally move the nodes to minimize the curvature.

4.2.4 Objective function

Points are contravariant tensors with coordinates

	

and the columns of the 3 by 2 Jacobian
matrix, J are covariant tensors x i = au~ , and x i.] = a

	 a 	
au, . The metric tensor has components

[9ij] = [xaxj ] .
A given surface and the curves within it have the following properties . The normal to

the tangent plane is given by N = x 1 x x2/lx 1 x x2 1 . The second fundamental form has
components b ij = xij . N. Lastly, we observe that the principal curvatures (i 1i ' 2) are given
by the eigenvalues of the generalized eigenvalue problem for ([bij]1<i,j<2, [gij]1<i,j<2)-

The objective function is the Frobenius norm of the second fundamental form over the
surface [36] . If the columns of the Jacobian are orthonormal, then the objective function
depends on the principal curvatures . In practice the average of the values Really a weighted
average of the values of the second fundamental form at the nodes is weighted.

4.2.5 Surface coarsening

The algorithm of [16] as implemented in GTS is used to coarsen the surfaces . In this section
the coarsening algorithm is described.

Consider a surface subdivision (triangulation) (V, E, K) (with graph (V, E)) of vertices,
edges and faces (triangles) . Suppose that a target number of faces, m << n = 1KI, is given
along with a tolerance T (e .g. diam(V)/ Vm ).

Defintion 1 . The pair of vertices (vi , vj ) is contractible in the initial subdivision, (v i , vj ) E C,
if either (vi , v3 ) E E or llvi — vj 11 < T .
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Edge contraction algorithms have a property, similar to transitivity, that the edges of a
contracted node are the edges of the parents . The pair contraction algorithm has the same
property, by definition.

Defintion 2. A pair contraction merges (v i , v3 ) E C into v E V. The edges (faces) connected
to v are the union of the edges (faces) connected to v i and v . The sets E, C, K are updated
by merging adjacency sets.

Each face adjacent to a vertex has a normal n and tangent plane {x nTx + 8 = Of.
Associate to each vertex v the error matrix

M

	

PPT , pT = (nT , 8), m l = 0.
adjfaces

At a boundary vertex with the normal plane to the boundary edge defined by q T = (nT , b),

add 10ggT to M.
Note that if (vi , v3 ) E C — E, and M i denotes the error matrix for v i then contraction

merges M t and M3 to M t + M3 . The authors apply the rule in general.

Defintion 3 . The contracting merges (v i , v3 ) E C into v E V is

= min{uT (M Z + M a )u : uT = (wT , 1)}.

The nodes are contracted to v such that the argmin is uT = (vT, 1).

For
[ M11 M12 ]Mii =_m l2 .M= L T

M12

If for v = (vi + vj )/2, there holds 11v —

	

> T, then use a least squares solution of the form
v — M-L (m12 + M11v ) .

In summary, the decimation by pairs algorithm to coarsen the surface is implemented as
follows. Order the contractible pairs C by increasing cost K . As long as the number of faces,
1K1, is greater than m, do the following. Attempt to contract the most contractible pair. Allow
the contraction if no normal of an adjacent face flips . If the contraction is not allowed, move
on to the next contractible pair . Lastly, update the surface triangulation, C, the error matrices,
and re-order the new costs in C.

4.3 Quadratic triangles

FFSD packages are built on hierarchical B-spline surface packages . In FFSD, locally a surface
fits given vertices and vertex normals . The simplest possible type of surface is a quadratic
Bezier triangle . There are three extra unknowns, that one might hope to use to match angles
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at the vertices . These unknowns correspond to the limited freedom in choosing the control
points as discussed in section 4 .3 .2. Further orientation constraints on the control points are
worked out in section 4 .3.3. The Jacobian may have critical points, and we figured out how
to avoid them. The Jacobian may also have nearly critical points corresponding to folds in
the surface however, and these we are not guaranteed to avoid . Several approaches were
tried, and the results are documented here As in section 4 .1, gradient flows are used to solve
optimization problems We will use this idea extensively in section 4 .3 .4. The perturbation
theory for Jacobian singular values is discussed in section 4 .3.1.

As the surface mesh decimation tools will remove nodes interpolated in a linear triangle,
refinement by triangulation in free form surface design requires curved triangles . These notes
begin to describe how quadratic surfaces might be used . The problem of finding a good surface
may be posed as a multivariate polynomial equation . The degree of the system is smaller than
in the generic case, leading to singularities that the author does not yet well understand.

A quadratic surface is defined (or constructed) locally as follows.

The deCasteljau Algorithm for Quadratic Surfaces

for i = 0 : n

forj=0 :n—i

u= [i ; j ; n — i — j]/n

cioo = [b2°o, b110, bioi]u
coin = [biro, bolo, boii]u
cool = [bioi, boil, bo02]u
f (u) = [ cloo, C olo, cool]u

end
end

The vertices [b2oo, bolo, boot] together with three control points [blot, bilo, boll] define the sur-
face. The indexing of vertices and control points is as follows.

020
110

	

011
200

	

101

	

002

The specification of a surface is by vertices and the surface unit normals at the vertices, and
some additional information.

Differentials are independent of the choice of two dimensional coordinates . The surface is
defined at a barycentric point, u such that e Tu = 1 and u > O. The differential of a barycentric
point is a barycentric vector, d such that eTd = 0 . Some algebraic manipulations yield that

f (u + d) = f (u) + 2 [ cloo, col°, cool]d + 0(114 2 ),
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for cloo, coin and cool] defined in the deCasteljau algorithm. The tangent spaces at the vertices
are determined as follows .

f (el + d) — f (e l ) = 2 [ b2oo, b 11o, b1o1]d
(4.1)

	

f (e2 + d) — f (e 2 ) = 2[b11o, bo2o, bo11]d
f (e3 + d) — f (e3) = 2 [blol, boll, boo2]d

The tangent space at vertex b2oo is in the range of [b110 — b2oo, blot — b2oo] . The tangent space at
vertex bolo is in the range of [ b llo — b olo , boil — bolo] and so on. Each control point lies along the
intersection of the corresponding tangent planes . A three dimensional space of control points
determines surfaces with specified normals . In section 4 .3 .2, the space is parametrized, and
the control point closest to the corresponding edge is determined . Such control points (nearly)
minimize the second fundamental form, but, as curvature is the ratio of the second to the first
fundamental forms, critical points may be present . Such surfaces may also have folds.

We attempt to uniquely determine the control points, and the surface, by specifying at each
vertex the angle between the tangents to the boundary curve . The control points are moved
iteratively to obtain the desired angles . An initial surface that is regular is required . Moving
the control points to obtain regular surfaces is not trivial.

A two dimensional parametrization of the surface is required at times . Here the first two
coordinates of u, r(x, y) = f (x, y, 1 — x — y) . The Jacobian matrix is

(4.2)

	

J = [r ,1, r,2] = 2 [c100 — cool, coin — cool]•

The second derivatives are constant,

r,ii = 2(b2oo — 2bioi + boo2),
r ,12 = 2 (boo2 + biro — boil — bull),
r ,22 = 2(bo2o — 2bo11 + b oo2) .

In the plane domain (x, y) the triangular subdomain with vertices (0, 0), (1, 0) and (0, 1) de-
termines the surface.

The critical points of r correspond to an eigenvector u of

(4.3)

	

(Bull — Bool)u = (Bolo — Bool)ue,

where ck (u) = Bku. Being able to write down the critical points is one of the biggest advan-
tages of using with quadratic surfaces . The eigenvectors is normalized as a (possibly infinite)
barycentric point . The rank of J at a critical point is one unless e = 1, in which case J = 0.
The coordinates of a critical point are the first two components of the eigenvector . If e is real,
then Jv = 0 for vT = [1,] (1 + 2)-1 .

Generically, the critical points of f are isolated,

J(x + dx) (v + dv) = J(x)v + J(x)dv + Hdx + . ..
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for
ari vi

H = [axjaxk

	

[[r ,111 r,12]v , [r,21, r 22]v].

On the other hand, the Jacobian matrix singular values generically have one dimensional level
sets .

Nearly critical values in the triangular domain are detected in two steps . Evaluation over
a regular net, using 720 singular value decompositions (SVDs), is reliable . First, any critical
points inside the (open) domain are determined . Complex critical points are projected into the
real plane, so as to detect a pair of nearly real critical points . Second, the smaller Jacobian
singular value is minimized along each (closed) edge . The line minimization is by brute force.
There are two levels, and on the fine level, we first attempt to use a Newton method using
the Hessian. But if this produces large steps, brute force is applied once again . Presently,
detection costs something like 120 SVDs.

4.3.1 Perturbation of SVDs

The derivatives of the singular value decomposition (SVD) of the matrix A in M(3, 2) due to
a one dimensional family of perturbations in the direction of the matrix B are reviewed. For
A(t) = A + Bt = U(t)E(t)V(t) T with U in 0(3), E in M(3, 2) and V in 0(2), analytic
expressions for E, V, U and E are derived, in that order.

Differentiate A(t) once with respect to t,

B = UEVT + UEVT + UEVT .

The differentials of the matrices of singular vectors have the form

(4.4)

	

U = US, V = VK

for S in o(3) and K in o(2) to be determined . The derivatives of the singular values are the
diagonal elements of C := UTBV.

Next, notation is introduced to keep track of the decomposition M(3, 2) = M(2, 2) +
M(l, 2) . For E2, S2 and C2 are in M(2, 2),

8T
3

	

C3
0 3 ]c= C2 J .

C2 = S2E2 — E2K + E2, c3 = 83E2 .
Next we determine S and K. C2 + C2 = (S2 + K)E2 — E 2 (S2 + K) + 2E2 , and in

particular c21 + C 12 = 921(x1 — a2), G = S2 + K, where C = [cif ] and G = [gib ].
Note in the following that 821 = -812 .
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S2 = Rs21 and K = Rk21 for

0

	

-1
R=

1

	

0 '

Next we determine 8 21 and k21 . For

r 1

	

1
M=

1

	

-1 '

and
61 — 62

	

0D
0

	

6 1 + 62
there holds

MI
C12
C 21

=DM S 12

k12

Noting that M-1 = M/2, one may show that

61 62 -
8 12
k12

(4.5)

for forµ= 1 /(( 62 — 61)(a-2+61)).
The most important case is the qualitative properties in a neighborhood of a regular critical

point, 61 > 62 = O. Note that s31 = c31/61 and as 62 —* 0, [k21, s21] —f [c12, c21]/61 . There is
a pole singularity in s32 = C32/62 .

Lastly we determine the second derivative of a2 in the direction B . Differentiate again,

o = UEVT + 2UEVT+
UEVT + 2UEVT+
UEVT + 2UEVT .

Substitute U = U(S2 + S), V = v (K 2 + k), to find

0= (S2 +S)E+2SE
— 2SEK+

UE(K 2 + k) — 2EK.

Along the diagonal, there holds

0 = ((S2 )ii + ( K2 )Zi)6 i + &j — 2 (SEK )ii•

Therefore, S2E2K = s2ik21RE2R = — s21k21d iag(62i 61 ) . Furthermore,

SEK —_ — s21k21diag(62i 61 )
—s3 E 2K

Because S is skew symmetric, xT //S2x = — 11Sx 1l , and we have

(4.6)

	

62 = (s21 + s32 + k21) 62 — s 21k21 61•

53



4.3.2 Control points with prescribed normals

Specification of the vertices and normals defines a three dimensional space of control points.
The formulas stated here are independent of the choice of surface parametrization (Jacobians).
Given vertices and surface vertex normals, {vi , n 2 } 1 , the corresponding matrix of control
points [ b lob b llo, boll] is a function of an a in R3 . By Equation (4 .1), the control points are
along the intersection of pairs of tangent spaces.

Control points with specified vertices and vertex normals have the form

b101 = v l + T1G1( : , 1 )/ 2 ,
(4 .7)

	

bllo = v2 + T2G 2 ( :, 1 )/ 2 ,
boll = v3 + T3G3 ( :, 1)/2,

where for 1 < i < 3 and a4 = a l , each

(4.8)

	

Gi(a) = Gi(0) + Pi[ai, 0 ; 0 , ai+1].

A dual relationship between the second columns of Gi (a) and the control points exists.
The matrices G i and Pi may be determined as follows . A function that returns a matrix

SO(3) with specified first column is used to transform {ni}1<i<3 to {Ti}1<i<3 . Form

Li = [Ti , Ti+i]

in M(3, 4), with T 4 = T1 . Compute the singular value decompositions, L i = UiSZ VT where
Si is in M(3, 4) . Form

fi = Vi ( :, 1 : 3)Si ( :, 1 : 3 ) -lUT
(vi+1 — vi),

with v4 = vl . Then for fo = f3,

Gi = 2[—fi-1(3 : 4), fi( 1 : 2)].

Pi are computed so that T i PP ( :, 2) = Ti+IPi+1(:, 1) . For Vo = V3 ,

Pi = [—V2 _ 1 (3 : 4, 4)Vi (l : 2, 4)].

The Jacobian J is a function of a as well as x, J = J(a, x) . To first order, J(a + da, x +
dx)v = J(a, x)v + Hdx + Ada . By Equations (4 .7) and (4 .8),

Dab lol = [T1

	

( :, 1), 0 , 0],
(4.9)

	

Dabllo = [0, T2P2( : , 1 ), 0],
Dab011 = 2 [ 0 , 0 , T3 P3(•, 1 )] .

At the barycentric point u, A = [T1 P1 ( :, 1), T2 P2 ( :, 1), T3P3 ( :, 1)] 0 (Ev) for E = [u3
u l, —u1 ; U2, ul ; -U2, u3 — u2]

54



4.3.3 Orientation

Given vertices and vertex normals, we have determined a three dimensional set of control
points, parametrized by (Gi (a))1<i<3, with a a real dimensional vector. As we will now show,
the geometric constraint that the surface is positively oriented corresponds to the algebraic
constraint det (G i (a) ) > O.

One may associate to the control points the 2 x 2 matrices (T i )2_ 1 and (G i )3 1 as follows:

2[b101 — b 2oo, b110 — b2oo] = T1 G1(a)
2[b110 — bolo, boll — bolo] = T2G2(a)
2[boll — boot, blot — boot] = T3G3( a)

If Q is in SO(3), then Qa x Qb = Q(a x b) . The orientations of the tangent planes at the
vertices are related to the determinant of the G matrices . Consider the columns of the G

matrices . If G1 = [gi, g2], then

2(b101 — b2oo) x 2(bllo — b2oo) = Ti91 x Tig 2 =

= [T1, ni][g l ; 0 ] x [T1, n i][g 2 ; 0 ] = [T1, n1]([g l ; 0 ] x [ g 2 ; 0]) =

= [T1, nl] ([g 1 ; 0 ] x [g 2 ; 0 ]) = n l det(G 1 ).

Equation (4 .8) implies that

Pi G I (a) = Pi 1 G1(0) + [ a l 0 1
IL 0

	

cl 2

We define x,y,z and r by

Pl 1G1(0) = r yl
rl

This implies that det(G 1 ) = ((a1+y1)(C12+x1) —z1) det (P1) . And furthermore, det(G 1 (a))det(P1 ) =

((a l + xi)(ci2 + yl) — zi ) . Finally,

11cti2 + cti 1x 1 + cl 2 y 1 = (det(G 1 (a)) — det(G 1 (0)) det(PI ).

A similar construction applies to G2 and G3 . These equations may be solved given det(Gi ),

say det(Gi) = 1 (but this is not at all obvious) . This approach to selecting feasible control
points is not discussed further.

Note that if Gi (a) is singular, then the surface has a cusp singularity at the vertex . This is
problematic for gradient based optimization .
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4.3.4 Optimization of the control points

If tentative control points have been chosen, and the corresponding surface has a critical point
or a fold, then the location of the control points must be changed or optimized . Three different
objectives apply, depending on the nature of the singularity. The most common is a fold . A
second case concerns a (nearly) critical point on the boundary of the domain . The objective is
to maximize the perturbed (nearly) critical value . The third case is a critical point in the (open
triangular) domain . The objective is to move the critical point nearer to the boundary.

The strategy is to select da to control the flow of the argmin, x, along some desirable
vector field dx. A locally optimal da is applied to the global regularization problem . The
Jacobian matrix has singular value decomposition J = U~EjVT for V = [v 1 , v2 ] and Jvi =
ui ai , 1 < i < 2 . The derivative of the (right) singular vectors in the direction v2 is given in
Equation (4.4). Let rc = K21 . To first order, J(a + da, x + dx) (v 2 + dv2) = Jv2 + J dv2 +
H dx + A da = u 2a 2 — u lal dk + Hdx + Ada.

4.3.5 Interior Critical Points

For a regular critical point (i .e. al > a2 = 0), consider the example r(s, t) _ [s, st, s 2 + t2]T

The unique critical point is [s, t] = [0, 0] . The surface intersects itself along the curve r(0, ±t).
The example is the normal form (in the sense of catastrophe theory) of a regular critical point.

The critical point is an end point of the curve of self-intersection . The simplest case is a
critical point of f , a2 = 0, in the (open) triangular domain . The differentials of the control
points, da, and the critical point, dx satisfy

(4.10)

	

Ada + Hdx — u l a l dk = 0.

Given dx, if A is (nearly) singular, perturb dx slightly to reduce the norm of da, subject to the
constraint that the direction of dx does not change significantly.

The control points move in the direction da chosen to that the critical points move in the
same direction dx as the direction of the shorted path out of the triangular domain . dx . As
usual, the starting point is a singular value decomposition ; [A, H, —u l a l ] = U1 E 1UT for V in
M(6, 3) . The matrix of right singular vectors, V = [V1, V2 ], for V1 and V2 both in M(6, 3) . For
any da, the descent direction always exactly solves Equation (4 .10). The equation that says
this is that for F = —[I2 , 0]V2-TV1 , there holds dx = Fda (assuming that V2 has full column
rank) . Next compute another singular value decomposition, F = Uf Ef Vf for Vi in M(3, 2).
The search directions are determined from a regularization problem in standard form,

min I lFda — dX 112 + A2 11 da ll 2 .

The parameter A is chosen to minimize the angle between dx = Fda and dX by a line search
in the direction of da. The eigenvalue problem, Equation (4 .3), determines the nearby critical
point x(T) .
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4.3.6 Exterior Critical Points

Next we discuss a partial solution in the case of a nearly critical point in the (open) triangular
domain, a2 > 0.

Consider the entire {J(x) : x E R 2 } . Along the curve u2 Hdx = 0, there holds a 2 (x +
dxT) = a2 (x) + O(T) 2 . Moreover along u2Hdx = 0, the right singular vector v 2 changes
slowly, and so H also changes slowly. In a one parameter family of Jacobian matrices, in a
neighborhood of a regular critical point (i .e . al > a2 = 0), by Equation (4 .6) there holds

a2 = (c32) 2/a2 + 0(1) . This "force" keeps a2 from changing sign . This explains why
choosing dx so that a-2 decreases, namely dx = —HTu 2 , decreases a2 insignificantly : the
second derivative Q2 becomes even larger and positive, and after a brief negligible decrease,

a2 actually increases.
Due to dc 32 = u3 Hdx, variation of x in the curve u3 Hdx = 0 is insensitive to small

values of a 2 , a2 = 0(1) . The curve u3 Hdx = 0 through a critical point traces a fissure in
the a2 (x) surface . Such fissures on the a2 (x) surface correspond to folds in the triangular
surface. A very common situation is that no critical points are in the triangular domain, and
the smallest values on two edges are on two nested level sets of a2 (x) that both enclose a
critical point of a2 (x) . If the two minima along two edges are in the level set that encloses the
same critical point, simply optimize the smaller argmin.

We see that if the triangular domain is free of critical points, then the minimum over the
boundary of the Jacobian singular values is a very good estimate for the minimum singular
value of the Jacobian over the whole triangle . Recall that at a local minimum, ±, along an edge
the gradient of a2, 4H, points in the direction of the inward pointing normal . Suppose that
the vector t is a unit tangent vector to the edge . For x near to x, the differential du2 changes
extremely quickly from u2 (x) . du 2 = u 3u3Hdx/a2+ lower order terms . For S = Eu3 Ht/a2 ,

\a 2 (x + tE) = (u 2 + u 3 5)TH/ (1 + S 2)+ lower order terms . The estimate is accurate for E < 1
and equivalently for S < 1/a2 , which is much larger than one . If x varies along a curve that
transversely intersects the fissure, then u 2 (x + tµ)

	

u3 (x) sign(µ), for appropriate t.

In order to use a local theory to maximize the minimum a2, the derivative of x(a) with
respect to a must be negligible. In general, instead of da = ATu2 , one may use g = ATu2 —
ATu3 , for the 0 such that u3 Ada = 0 . A line search will determine a suitable value of
a2 just as at a boundary point . If 0 is the angle between ATu2 and ATu 3 , then u2Ag =
11A Tu 2 11 2 sine (9) , which is always positive, so g is always a descent direction . But the rate
of descent can be very slow, and can change very quickly . This is not robust in practice.
Furthermore, we have not ensured that normals have a positive orientation.

4.3.7 Formulation of a Polynomial Equation

The problem of finding the control points with specified angles is equivalent to a multivariate
polynomial equation . Suppose that at the ith local vertex, is the cosine of the desired angle.
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The trivariate quartic polynomial equation f (a) = 0 for

a = [a1, a2, a3
lT

l

may be solved using resultants . The problem statement is as follows . We are given scalars

Tc ['Y1, 'Y2, 'Y31 ,

and matrix-valued functions with linear coefficients

(4.11)

	

GZ(a) = Gi +
pi r ai

	

0 1
L 0 ci+1

where a4 = ctrl . We form the normal equations

Wi (a) = (Gi)T(a)Gi(a).

The diagonal elements of W i (a) are univariate quadratic polynomials, and the off diagonal
elements are bivariate quadratic polynomials . The three bivariate quartic equations

fi (a) = `Y2 W i 1 W 2 2 — W i 2W21

together form the trivariate quartic system.
We can use this to build the 3 x 35 coefficient matrix F in a way that depends only on

the input data. Here 75% of the entries in F vanish . The solutions include the control points
we want, as well as control points in which the cosine of the ith vertex angle is --y i , and also
control points such that the surface is not positively oriented . We will not go into the details to
the construction of resultants here . However the technique to extract rows from the resultant
to determine an eigenvalue problem does not work in this case.

5 Interface Identification

Interface identification is a reduced basis method for inverse problems . Assumptions are made
about the data topology. Linear perturbation methods are used to characterize the interior
scatter boundary (see section 5 .7-5 .9 in [23]) . Piecewise real-analytic conductivities may be
determined from static boundary measurements [26] . The inverse conductivity problem for
small inclusions and Maxwell's equations may be addressed using asymptotics as discussed,
for example, in [2] . Here we assume that the inclusion is not small . A P1 finite element
method is used . Mesh generation is discussed in section 5 .1.

The sharp interface inverse algorithm involves perturbing the triangulated interface surface
mesh in a low dimensional space of smooth deformations . The determination of such a space
(that is independent of mesh coordinates) follows.
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Allowing each vertex to move in an arbitrary real direction has the advantage that any
required surface (of the same genus) is `reachable' from the original surface . However if
two adjacent vertices move towards each other, then the surface will become knotted (folded
or looped) . The treatment of a search direction (surface deformation) that adds knots to the
surface is not trivial.

A surface is invariant under motion in the tangent space . One may constrain the surface
deformation to be along the normals . On the other hand, normal deformations poorly approxi-
mate rigid motions . One may include rigid motion of the surface, y(x) = Qx + b, Q in SO(3).
If the initial surface is a sphere, translations suffice . A two phase method is used: a rigid
motion phase followed by a normal deformation phase . Phase one is discussed in section 5 .3
and the problem of a general deforming interface is discussed in section 5 .5.

Results on the use of the sharp interface inversion tools in the FDM3D finite difference for
the time-harmonic Maxwell's equations were not available in time to include in this report.

5.1 Creating tetrahedral meshes with TetGen

We investigate interface adaptivity based on the solution to elliptic partial differential equa-
tions solved by the P1 finite element method . The underlying discretisation of the model
domain is composed of a Delaunay tetrahedral mesh generated by the OpenSource meshing
package TetGen v.1 .3 .4 (see http ://tetgen .berlios.de/) . In this section, we review how to use
TetGen.

TetGen will accept Geomview format files as input, and GTS can output Geomview for-
mat files, * . off . For the first experiments with TetGen, GTS created a small sphere sur-
face mesh and saved it in this Geomview format . Invoking TetGen with tetgen -pqeO
out file .off created the first tet-mesh, comprising multiple files.

TetGen's * . sme sh file format is similar to GTS's * . gt s file format, except TetGen's
facet list refers to the list of vertices (nodes) and GTS's refers to an edge list that refers to the
vertices.

To create one surface inside of another, the icosahedron example surface (icosa .gts) was
used as an inner surface . The outer surface was this same icosahedron model with the vertices
farther from the origin . The vertices and facets from these two models were assembled into an
* . smesh file by hand . The command tetgen -pqz concenicosa meshed the regions.

A few other * . smesh files were assembled to explore region and node attribute features
and and to characterize the numerical requirements on the meshes.

5.2 Combining surface meshes into tetrahedral meshes

We wrote a program, called Enmesh, to use TetGen and GTS together . The Enmesh program
transforms two input surface meshes (in GTS format) and a region file (which tells TetGen
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that the inner surface divides the domain into one interior and one exterior subdomain) . It is
also possible to input additional points (as is needed for mesh refinement) into a tetrahedral
mesh. Three output files define the mesh : the vertices coordinates, * . node ; the indices of
the vertices comprising each tetrahedron, * . e 1 e ; and the indices of the vertices comprising
these face in each input surface, * . face.

The TetGen data structure is called TetGenIO (see the TetGen User Manual) . Enmesh
parses the surface files using GTS, and then populates the TetGenlO data structure.

The optional reg i onf lie . txt is used to label the tetrahedral elements inside and out-
side of the inner surface . The first line of reg ionf ile . t xt consists of three floating point
values for the coordinates of some point inside the inner sphere and another value that will
serve as a label for all tetrahedra in this region . The second line of reg ion file . txt con-
sists of three floating point values for the coordinates of some point outside the inner sphere
but still inside the outer sphere and another value to label the tetrahedra in this region . Note
that these two lines may be reversed . e .g .:

0.0 0.0 0.0 4
-2.0 -2.0 -2.0 3

means that the area from (0, 0, 0) to the inner surface will be labeled with a 4, and the region
from the point (-2, -2, -2) to either surface will be labeled with a 3 . (Assuming the inner
surfaces origin is at (0, 0, 0) and its radius is less than 2 .)

Element quality is important for calculation speed, stability, and convergence . There is
no single, easily calculated measure of element quality . TetGen generates Delaunay meshes
of elements (tetrahedra) with radius-edge ratio bounded by a user supplied parameter (say
two) . A tetrahedron's radius-edge ratio is the radius of its circumsphere divided by its shortest
edge length. A low radius-edge ratio is a necessary, but not a sufficient, condition for element
quality . A tetrahedron's aspect ratio is its longest edge length divided by the diameter of its
inscribed sphere . The higher ratios correspond to 'slivers', badly shaped tetrahedra that cause
problems in the finite element calculations . The aspect ratios for the tetrahedra in the syndata4
mesh are shown in Figure 5 .1 (solid lines) . The aspect ratios here are satisfactory, but must be
monitored.

5.3 Motion of a spherical interface

An example with the simplest initial surface, a sphere, is considered next . In this case our
reduced Jacobian is 3 x 3, corresponding to translations . The domain is a sphere of radius
ten. Here the (potential) field is the solution of Laplace's equation with diffusion constant
one in the domain outside the inclusion, and the diffusion constant is ten within the inclusion.
Physically, this corresponds to a direct current problem.
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Figure 5.1 . Histogram of tetrahedral element quality for two rep-
resentative meshes . The syndata4 mesh has 3303 tetrahedra
and 920 vertices . The InitialGuess mesh has 7910 tetrahedra
and 1736 vertices . Delaunay meshes contain some slivers with low
element quality.

A dipole source is used along the line segment from x i = (1, 0, 1) to xr = (1, 0, -1), with
strength

Ix-x11
2 + .1

	

Ix-xr1 2 + .1

Because only one dipole is used, the solution is not unique.
The target synthetic data is a tetrahedral mesh called syndata4 . The mesh has a 'puck'

shaped interior surface,

{(x , y , z ) : x2 + y 2 = 1, lzl <
2

u {(x, y, z) : x 2 + y2 < 1, I z l = 2}.

The tetrahedral mesh consists of 3303 tetrahedra an 920 vertices . Figures 5 .2 and Figure 5 .3
show cut-away views of the mesh from the top and side respectively.

The mesh i n i t i a l gue s s 5 is named to reflect its status as the first guess used for solv-
ing the inversion problem . Once again the domain is a sphere of radius ten . The inner region,
the seeker, is a sphere of radius one centered at (2.5, 2.5, -1) . The tetrahedral mesh consists

F-
10

E
Z

10'

100 0
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Figure 5.2. A cut-away view of the puck-shaped inclusion in the 
syndata synthetic data tetrahedra1 mesh is shown from the top. 

of 7910 tetrahedra and 1736 vertices. Figures 5.4 and 5.5 show cut-away views of the seeker 
surface. 

In a meshed domain s1 = 0" U S U Oi conforming to the spherical interface S = (x : 
Ix - cl < r ) ,  keeping track of the motion of the interface is not trivial. 

All the elements with vertices on S define a tubular neighborhood of S,  henceforth the 
tube. For the purpose of computing sensitivities, the interface motion is restricted to the tube. 
For each element in the tube, the new interface position is determined. 

The step-size for determining the numerical shape derivatives was determined empirically. 
The step-size must not be too small. 

5.3.1 Assembly of the perturbed stiffness matrix 

As the center moves to C ( T )  = c + dr, The surface moves to S, = (x : Ix - c(r)l < r ) .  The 
interface has moved across an element if some of the elements vertices are inside and some 
vertices are outside. 

During the movement of the interface, the intersection of a large sphere and a small tetra- 
hedron is approximated as an intersection of a plane and a tetrahedron. Only cases in which 
a plane divides a solid into two subdomains of positive measure are considered in detail. A 

62 



Figure 5.3. The syndata tetrahedral mesh is shown in cut-awa.1 
view from the side. 

plane that intersects an edge in two points contains the edge. 

The plane may also intersect one, three or four faces. An intersection of one plane does 
not produce any subdomains. An intersection of three faces produces two subdomains, one 
a tetrahedron who’s apex is the single interior or exterior vertex, and the other a truncated 
tetrahedron who’s volume is the difference between the original volume and the volume of the 
other subdomain. If a plane intersects four faces, the two subregions are both unions of two 
tetrahedra. The plane may intersect one or three edges. An intersection on one edge does not 
produce any subdomains. An intersection on three edges is an intersection on three faces. The 
plane may intersect one, two, or three vertices. An intersection with one vertex produces no 
subdomains. If a plane intersects two vertices, then the plane contains one of the edges. If the 
plane intersects three vertices, the plane contains three edges and therefore is an intersection 
on one face, producing no subdomains. 

Computing the intersection of the whole interface and each element in the mesh, one at 
a time, is inefficient. Efficient shape derivative calculation is possible if the deformation is 
constrained to lie in a tubular neighborhood of the surface. By keeping within a one element 
thick tube neighborhood of the surface, element adjacency is not needed. In order to use larger 
step sizes, the element adjacency graph will be needed. 
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Figure 5.4. The tetrahedral mesh of domain with an the initial 
guess of the inclusion is shown in cut-away view. 

5.4 Refinement and coarsening of surface meshes 

As preparation for this discussion of the problem of deforming interfaces, we discuss next 
the refinement and coarsening of surface meshes. The GTS package is used to coarsen or 
refine the surface meshes (remove or add vertices) while maintaining the Delaunay property. 
GTS includes two coarsening algorithms, a global volume preserving algorithm and a default 
algorithm based on edge lengths. Both work very well. A deformed sphere mesh of 642 
vertices is shown in Figure 5.7. 

Figure 5.8 shows the result of applying a surface mesh coarsening algorithm from GTS. 

5.5 Implementation of deforming surfaces 

To change from a seeker sphere to a deforming surface, algorithms are needed for several tasks. 
In section 5.5.1, an algorithm is presented that defines a low dimensional set of deformations. 
In section 5.5.2, the step length for numerical gradient with respect to each deformation is 
determined. 
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Figure 5 5 .  The tetrahedral mesh for the initial guess is dis- 
played. The guess of the inclusion location in shown in detail, 
revealing small tetrahedra near the interface. 

5.5.1 Space of Deformations 

A low dimensional space of deformations is used. The deformation corresponds to motion 
along the vertex normals. Spherical harmonics are natural for spheres. For general (genus 
zero) surfaces we use the fundamental eigenfunctions for the smoothing operator on the con- 
nectivity graph. 

A method for generating smooth deformations of surfaces (analogous to spherical har- 
monics) is presented. An averaging matrix A is derived from the Boolean adjacency matrix 
B for the vertex to vertex connectivity in the surface. In contrast to the graph Laplacian 
diag(B1) - B, the averaging matrix A = D ( B  + I ) D  for the positive definite diagonal D 
such that diag(D2) = ( B  + 1)l. The averaging matrix is symmetric and indefinite. An 
eigenvector of A is interpreted as the surface velocity at each vertex normal. An advantage of 
the averaging matrix, compared to the Laplacian, is that it is the greatest (easy to compute) 
eigenvalues of A whose eigenvectors correspond to smooth surface deformations. 

These deformations are used to test the GTS coarsening algorithm in a previous section. 
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Figure 5.6. Results for first test problem. The solution is not 
unique, only one data point used. The error is the distance from 
the center of the seeker sphere to the set of solutions. The b 
residual here is the objective function, the error in the gradient 
along the dipole segment. 

5.5.2 Step Lengths 

The deformed surface remains within the tube; it passes through vertices or edges of the tube 
elements. A prerequisite for computing the step lengths and volume fractions is to define the 
interface motion. 

The deformation is a sum of its positive and negative parts, d = (d + ld1)/2 + (d - ld l ) /2 .  
The positive (negative) part of the deformation moves the surface in the exterior (interior) tube 
region. For each element in the exterior (interior) tube region, the interface nodes move some 
non-negative (non-positive) distance along the vertex outward normals. The images of the 
vertex nodes under the deformations define cutting planes for the tube elements. 

Next, we determine step length so that the deformation remains in the tube. A multiple 
of the positive (negative) part of the deformation will be applied to elements outside (inside) 
the surface. For each tube element, determine the multiplier such that the cutting plane is on 
the element boundary. The step length is the minimum over the elements of these multipliers. 
The vertices will he denoted {xl. xr,xi,xj} if they split into two pairs, and {xo. xL,x3,xk} 
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if they split into a triple and one other. The corresponding normal vectors and deformation 
components inherit the subscript of the vertex. If one vertex is on the tube, 

If two vertices are on the tube, the exact step length is overly complicated. Instead, the tangent 
planes are raised at each vertex until one intersects one of the other two vertices, 

Suppose that three vertices are on the tube, and form the 3 x 3 matrices 

x = [xi - xor xj - x,, xk - x,], N = [niAi, q A j ,  nJk]. 

The step length is the real eigenvalue (X, N) of appropriate sign and minimal magnitude 
whose eigenvector coefficients do not sum to zero. 

Next compute the volume fractions for the deformation and step length as in the case of 
the spherical seeker. If a deformation is outside of a tube element, the volume fractions are 

Figure 5.7. A surface mesh with 1280 faces, 1920 edges, an0 
642 vertices is shown. 
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Figure 5.8. The surface mesh shown results from coarsening the 
mesh of Figure 1. The coarse mesh has 160 faces, 240 edges, and 
82 vertices. 

trivial but one must still check for correctness. A tube element has one, two or three nodes on 
the surface. If one node is on the surface, then the cutting plane is perpendicular to the vertex 
normal. If three nodes are on the surface, then the cutting plane contains the images of the 
three points. If two points are on the surface, then the cutting plane contains the images of 
both points, and is perpendicular to an averaged normal. If the two image points are xi and x, 
and the corresponding normals are ni and n, and then use the mean normal is 

nl+ n, 
h+nJ' no = 

and 

to determine the average normal 

(1 - uuT)n, 
I(1 - uur)nol' 

n =  
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