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Abstract

This report describes an approach for extending the onestianal turbulence (ODT)
model of Kerstein [6] to treat turbulent flow in three-dimemsl (3D) domains. This model,
here called ODTLES, can also be viewed as a new LES model. MLES, 3D aspects of
the flow are captured by embedding three, mutually orthdgona-dimensional ODT domain
arrays within a coarser 3D mesh. The ODTLES model is obtaiyedeveloping a consistent
approach for dynamically coupling the different ODT lingss® each other and to the large
scale processes that are resolved on the 3D mesh. The mauelésnented computationally
and its performance is tested and evaluated by performimglations of decaying isotropic
turbulence, a standard turbulent flow benchmarking problem
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ODTLES:
A Model for 3D Turbulent Flow Based
on One-dimensional Turbulence
Modeling Concepts

1 Introduction

1.1 Modeling Turbulent Flow

Turbulent flow phenomenology is central to a remarkably watege of engineering problems, in-
cluding many, such as nuclear weapon physics, climate ehamgl commercial power conversion
applications, that are relevant to key DOE missions. Howedespite many years of intensive
research, turbulence modeling remains a notoriously dlffigroblem. Cant [2] recently noted
that computational fluid dynamics (CFD) is by far the largesdr of high-performance computing
in engineering, and argues that the premier scientific ehg## confronting the fluids engineering
community is to gain a greater understanding of turbulemckis consequences in engineering
applications. Although it is tempting to hope that advanneomputing speed and hardware will
soon enable the direct numerical simulation (DNS) of sudbl@ms and thereby avoid the is-
sue of modeling altogether, in reality, the extreme rangemjfth and time scales associated with
high-Reynolds-number flows will continue to limit the use@RS (at least for the foreseeable
future) to rather simple conditions at relatively low Relgsonumbers. Thus, turbulence models
will continue to be indispensable tools in engineering gsialfor many years to come.

The two most commonly used approaches for computationadlyating turbulent flow are (1)
the Reynolds-averaged Navier-Stokes (RANS) approach(Zrttie large eddy simulation (LES)
approach. The key difference between these models is tHRAMS, the model equations are
derived by ensemble or time averaging the governing N&viekes equations, whereas in LES
the model equations are obtained by a spatial filtering ¢ioeraln either case, special terms are
introduced through the derivation process that must beesgmted with some additional closure
model in order to solve the equations. Although RANS methardswidely used and are of great
value in many engineering problems, experience over macgdis has clearly demonstrated the
inherent limitations of the approach, particularly as adprtve tool. Thus as computing power
has increased, so also has interest in the LES approach.

In LES, the spatial filtering step masks motions smaller thgpecified filtering length scale, but
the large-scale three-dimensional unsteadiness notreaptitom RANS calculations is resolved.
Although this leads to computational demands that are margfet than RANS, the cost can be
worth it because the unsteadiness captured by LES is one ofitist important features of many
flows. The challenge introduced by eliminating the smallesces the need to model the non-linear
‘subgrid scale’ terms which represent the effects of unwesbphysics on the resolved flow scales.



Unfortunately, the accurate modeling of these terms hageprparticularly difficult for all but the
simplest of flows. Long-standing efforts to develop an a@égelosure, and the difficulties that
have been encountered, are well documented (e.g. [9, 1@]pafcular note is a recent study
that analyzed in detail the requirements for accurate ofofar turbulent channel flow [14]. It
was concluded that it is insufficient solely to capture ttams$fer of energy from grid-resolved
to subgrid scales, and therefore that eddy-viscosity nioglelvhich addresses only this aspect
of the interaction between grid-resolved and subgrid s¢ateinadequate. At a minimum, the
closure must also capture the subgrid transport (in paatcwall-normal transport in near-wall
flow), subgrid stresses, and subgrid intercomponent teadsfe to pressure effects. No traditional
closure approach currently being pursued can demonstcabplyire these effects in principle, let
alone represent them accurately.

Another, more recently developed, turbulence model is tteedimensional-turbulence (ODT)
model of Kerstein [6, 7]. This model, and the concepts it Im®duced, is at the core of the new
approach developed here for LES.

ODT is a method for simulating the turbulent transport andashgic fluctuations in velocity
and fluid properties that one might measure along a one-diimeal (1D) line of sight through
3D turbulent flow. In contrast to RANS and LES, the ODT equatiare not derived directly
from the Navier-Stokes equations. In the 1D dynamical sydefined by the ODT model, the
effects of turbulent 3D eddies associated with real fluid f'we& modeled by 1D fluid-element re-
arrangements, denoted eddy events, that occur over a ratgegth scales and with frequencies
that depend on event length scales and instantaneous fles.stEhe first ODT formulation [6]
involved simulation of a single velocity component evoltyion a line. A more recent formulation
[7] introduced the evolution of the three-component vedijoeector on the 1D domain. General-
ization to treat variable-density effects dynamically hés been demonstrated [1]. Because the
model is 1D, well resolved calculations at high Reynolds hara are affordable, and remarkably
successful results have been demonstrated for a varietsgrminical flows. However, this same
1D attribute has naturally limited its application to tuldnce problems where spatial variations in
only one direction are of primary interest.

Recently, ODT was successfully used as the basis for a nalisubgrid closure model for
LES [11, 12]. This application was natural because sta#iktiariations in the near-wall region
are primarily 1D. While developing the ODT-based LES neaftwodel, a number of ideas were
generated concerning how ODT and LES might be more gene@ifpined. This report describes
one such approach, although others may also be viable. T$ie gaal is for large-scale 3D
turbulent motions to be captured by the LES part of the moddl @ representative sample of
the small-scale turbulent motions to be simulated by the @@t of the model. In this new
approach, denoted ODTLES, revised ODT equations are fatedithat allow physically realistic
interaction between the ODT model of the small scales andBI&ES representation of the
large-scale motions.

Because ODTLES combines elements of both LES and ODT, arexiafw of these modeling
approaches is provided in the next two subsections.



1.2 A Synopsis of the LES Modeling Approach

The LES modeling approach is based on the concept of spéteairfy. Given any physical quan-
tity @(x,t) that is defined over some spatial domainwe can define a filtered quantityx,t)
as

o(x,t) = /D o(x,t)G(x—2,A) dz, 1)

where G is a normalized filter kernel, D is the domain of the flamdA is the filter width. In LES,
the shape and spatial extent of the filter applied is a moglelwice. For example, if the filter is
defined as an anisotropic box filter, then the valug@ft) is simply the instantaneous average
value of@within the domain enclosed by a box centered around the gof@ther filter types used
in LES include the Gaussian filter and the sharp spectral.filte

The most common way to derive LES equations is to directiyyaihye concept of spatial filter-
ing to the Navier-Stokes and continuity equations. For arfthat commutes with differentiation,
and for an incompressible fluid with constant properties, olotains

oG o, op o[ (oG _

PE‘FPG—XJ_(UNJ)— 6Xi+6Xj {H(axj)]‘prl (2)
ou

=0 (3)

wheref denotes a body force and repeated indices are used hereltosumpmation. The fields
resolved on the LES mesh angandp, and the ternwiu; must be modeled.

Although often thought of as the LES equations, no anallygo&utions to these continuum
forms of the LES equation for any problems of interest areAnto the authors. All LES results
are, in fact, solutions to some discrete numerical reptasen of Eqgs. (2) and (3) (e.g., finite
difference, finite volume, finite element, etc.) on a spedifieesh, coupled with a particular closure
model. Thus the real LES equations are always a discretedbEnqs. (2) and (3) coupled with a
particular closure model. This point may seem trivial, lsutmportant for several reasons. First, all
numerical methods introduce numerical error, an effectivim LES can be difficult to distinguish
and separate from the effects of the subgrid models empldyedondly, an alternative approach
to developing LES equations, which has several advantagediscussed here, is to start directly
from the finite-volume method just mentioned.

In the early LES literature Schumann [13] described and ldpeel a discrete LES equation
set based on the finite-volume numerical method. In thisaaagr, called the ‘volume-balance
method, the averaged quantities correspond to a discuetdar of volumes that are fixed in space
(i.e., the mesh). The governing equations are integratg@eakyg to obtain discrete budget equations



for the individual mesh cells. In this context the modelimglgem is to represent accurately the
unresolved surface fluxes in terms of the spatially averagedatities that are available. Adopting

Schumann’s notation, the discrete LES equations thatspored to Egs. (2) and (3) above can be
written as

ou; _ au; -
pat' + pd; (GU}) = —8ip+ § u(a—xf ) +pfi, (4)
J
8 (T°) =0 (5)

whered denotes a humerical-difference operator, and the adeeatid diffusive flux terms (de-
noted by superscript S) are averages over surfaces, noheauerages.

No matter how the LES equations are derived, to solve therosum model must be chosen
for the nonlinear advective term (the second term in Eq. (2#p). To this end, it is common to
define a subgrid-scale stress tensoiT his, we note, is NOT the approach adopted in ODTLES.
However, for context it is useful to review this model be@iiss so commonly used. Reverting
to the continuum form of the LES equations, we can write

Tij:Uin—LTi i (6)

Gradient-diffusion models adopt the hypothesis that theatwopic part of the subgrid-scale
stress tensaris proportional to the resolved (large scale) strain-ratsorS:

1 _
Tjj — §5ikak= —2%831 (7)
s _1(ou  ou;
SJ_Z(axj+0>q>’ (8)

whereps is a subgrid eddy viscosity, which must be computed from gragpiate model, and
gij is the Kronecker delta. By defining a modified pressrthat includes the subgrid Kinetic
energy (i.e., the trace af, and dropping the body-force terpf; for simplicity, Eq. (2) can now
be expressed as

ou o __. 9P 9 ou
pﬁ*‘)a_x,-(“'“‘)_ ax T ox; {(“”S)(axj)]‘ ©)

One of the first models for the subgrid eddy viscosity wasoohticed by Smagorinsky and it
remains, together with its variants, a widely applied mottelan be written compactly as

bs = p(Csh)?(2S;S;j) 2, (10)
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whereCs is called the Smagorinsky coefficient, and the characteffigter width A is generally
computed as the cube root of the local cell volume (e.g. sige [4

A = (AxiAxohxz) 3. (11)

1.3 One-Dimensional Turbulence Modeling (ODT)

We now turn our attention to the ODT modeling approach. UnliES or RANS, which are
derived directly from the Navier-Stokes equations, ODTrnzdrbe described solely with a set of
continuum equations. Rather, the important physics affgdhe 3D turbulent flow along a 1D
line of sight are phenomenologically modeled. In ODT thedBalefined on the 1D domain evolve
by two mechanisms: (1) molecular diffusion, and (2) a seqaef instantaneous transformations,
denoted ‘eddy events,” which represent turbulent stitrimgese eddy events occur over a large
range of length scales, with frequencies that depend ort &xsgth scales and instantaneous flow
states.

Between the occurrence of eddy events, the time evolutidd®f velocity components; on
an ODT line in directiornx can be written as

oV 0%V B
at Voe © (12)

wheret denotes time and is the kinematic viscosity.

The evolution of the velocity field defined by Eq. (12) is imtgated at various points in time by
the previously mentioned eddy events. Each eddy event maydmpreted as the model analog
of an individual turbulent eddy, and consists of up to two meatatical operations that can be
represented symbolically as

Vi(X) — Vi (f(X)) + ciK(X). (13)

According to this prescription, fluid at locatiof{x) is moved to locatiorx by the mapping
operation, thus defining the map in terms of its invef6e). In ODT we use a special measure-
preserving map, called the 'triplet map, which in any deterimplementation simply corresponds
to an exchange of fluid elements according to a predefine@rpattThe second operation in-
dicated is an energy-conserving modification of the vejopibfiles used to implement energy
transfers among velocity components. This operation ig applicable when more than one ve-
locity component is being modeled, and is used to model presaduced energy redistribution
among velocity components.

The frequency of eddy events is governed by a probabilistidehthat depends on the current
instantaneous velocity field, the eddy location and itstleisgale. Details can be found in Kerstein
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[6, 7], and will not be repeated here. Of note here is that O&uires the specification of three
model parameters. The most important of these is the ovatallconstanC, which controls the
relative strength of the turbulent stirring model. The ottvéeo model parameters are the viscous
cutoff parameteZ and the energy transfer coefficient

A key aspect of ODT is how eddy events modify 1D property/g#oprofiles, thus modifying
the spatial distribution of velocity and kinetic energy. eTtesulting two-way coupling between
velocity profiles and the eddy rate distribution leads to ptax behavior that emulates both the
gross structure and the fine-grained intermittency of théuBBulent cascade. It is also noteworthy
that the model completely avoids the use of eddy viscositgepts to model transport or energy
transfer.

12



2 Model Description

In this section we describe ODTLES, an approach for extentlie one-dimensional turbulence
model of Kerstein [6] to treat turbulent flow in three-dimemmsal domains. ODTLES can also be
thought of as a novel LES approach, and we will show how |aiggde 3D turbulent motions are
captured by the LES aspects of the model but are stronglyledup the small-scale turbulent
motions generated by the ODT part of the model.

Before continuing we also note that ODT might be combineth WES in at least two different
ways. One option is to start with the LES equations (derivedgatially averaging the NS equa-
tions), and seek a method for using ODT as a subgrid closudehfior these equations. This can
be thought of as a top-down approach, and is denoted LES/@B&cond option is to begin with
the ODT equations, and then add additional terms so thatattytarthogonal ODT domains might
be coupled together and 3D LES modeling constraints erdortee ODTLES model described
here follows the latter bottom-up approach.

Figure 1. lllustrative geometry of the ODT and LES subdomains

2.1 Geometry and Numerical Discretization

In ODTLES we discretize our domain of interest in two distibat interdependent ways. The first
is by a standard set of rectangular control volumes. Therskmoformed by embedding three,
mutually orthogonal ODT domain arrays within the coarsem3&sh. This is illustrated in Figure
1 for a simple box-shaped region. Here we see that the owdwailin is subdivided intd>

uniform LES control volumes, whemdies = 3 is the number of LES-scale subdivisions in each

13



direction. A 2D array oNZ, ODT lines are also placed in each coordinate direction. Titisis

a network of lines that intersect each other at the centeadi €ES control volume, as illustrated
in Figure 2. Note that only the three lines that intersechaghaded control volume are shown in
Figure 1. Overall there are!\[ﬁ}aS ODT lines that extend through the computational domain.

On each ODT lineNog: mesh points are defined, wheMgy: > Nies. The value ofNyg; must be
large enough so that the smallest scales of the turbulendmate adequately resolved. (Later this
constraint will be relaxed by the introduction of a subgriddal for ODT.) The total number of
mesh points in the problem is thereforel82x Nogt. This can be compared with the total number
of points that would be required for a direct numerical siatioin, which is 3 Ngdt.

Figure 2. Three ODT lines intersect each LES control volume

vi¥y ¥ ¥

Figure 3. Staggered location of ODT velocity components

Associated with each ODT line direction k (k=1-3), we defiwe ODT velocity components,
Vki (i #K), corresponding to the two coordinate directions that afegonal to the line. This two-
component model is a simplification of the three-componestar formulation described in [7],

14



and is summarized below in Section 2.2. Although a 3-compo@®®T model would also work
in the formulation presented here, the velocity componarglfel to each ODT line would not be
used in any direct way. Thus, for numerical efficiency reasare have adopted the 2-component
model for the present purposes.

Although instantaneous ODT values are conceptualized ia$ yaues, a sub-control volume
is also defined for the purpose of preserving certain coasierv properties described later. As
illustrated in Figure 3 for a vertical (k=2) ODT line, the gtgered locations of the two velocity
components are associated with the ODT sub-control volaesfin the standard way.

In ODTLES numerics, there are two important length scalgsg AX, and two important time
scalesAt < AT. These are, respectively, the ODT and LES spatial disetsbiz lengths and the
ODT and LES time steps.

2.2 Atwo-component formulation of ODT

The version of ODT utilized here describes the evolution déva-component vector velocity
field vi(x,t) defined on a 1D domain, parameterized by the spatial codedhinavhich is assumed
orthogonal to the two velocity component directions. Tloisyfulation follows in all key respects
the three-component vector formulation described in [7].

The fields defined on the 1D domain evolve by two mechanismégaular evolution and a
stochastic process representing turbulent stirring. Thehsastic process consists of a sequence of
‘'eddy events, each of which involves an instantaneoussttamation of the velocity and scalar
fields. During the time intervals between eddy events, theeoutar evolution of ODT velocity
components is governed by Eq. (12).

The turbulent stirring submodel is specified by defining tteghramatical operations performed
during an eddy event and by formulating the rules that gotlegrselection of events. Because the
model has multiple velocities, an eddy event consists of ivabhematical operations. One is a
measure-preserving map representing the fluid motions@ésd with a notional turbulent eddy.
The other is a modification of the velocity profiles in ordeinbplement energy transfers prescribed
by the dynamical rules. These operations are representedadigally by Eq. (13). According to
this prescription, fluid at locatiofi(x) is moved to locatiorx by the mapping operation, and the
additive termciK(x), is used to model pressure-induced energy redistribuonsng velocity
components.

The functional form chosen fofr(x) is called the ‘triplet map, and can be defined mathemati-
cally as

3(x—Xo) if Xo < X< X+3l,

2l —3(x—Xo) if Xo+ 2l <x<xo+3l,
3(x—x) -2 it xo+ 2 <x<x+,
X—Xo otherwise.

f(x) =0+ (14)
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This mapping takes a line segmdrg, o + 1], shrinks it to a third of its original length, and
then places three copies on the original domain. The midujlg s reversed, which maintains the
continuity of advected fields and introduces the rotatidolaing effect of turbulent eddy motion.
Property fields outside the sitesegment are unaffected.

In Eq. (13),K is a kernel function that is defined &$x) = y— f(x), i.e., its value is equal to
the distance the local fluid element is displaced. It is nersonly within the eddy interval, and it
integrates to zero so that energy redistribution does rexi@h the totaly-integrated) momentum
of individual velocity components. It provides a mechaniemenergy redistribution among ve-
locity components, an important characteristic that eemtite model to simulate the tendency of
turbulent eddies to drive the flow toward isotropy.

For an equipartition of available energy (see [7]), the galafc; are governed by the relation

27 1
Gi= g (—VLK +sgnVik) Q(VﬁK +V]27K)> , (15)

where the two velocity components are denoted by the sydts¢rnd j, and

1

i = g WK = oy [ w0l —20x-50)] o (16)

The final ingredient required in the model is the determorabf the time sequence of eddy
events, individually parameterized by positign and sizel, that are implemented. In ODT,
eddy events are implemented instantaneously, but must adtiufrequencies comparable to the
turnover frequencies of corresponding turbulent eddiegnEs are therefore determined by sam-
pling from an event-rate distribution that reflects the ptsygjoverning eddy turnovers. A key
feature of this distribution is that it is based on the insagous state of the flow, and thus evolves
in time as the flow evolves.

At each instant in time, the event-rate distribution is dedifby first associating a time scale
T(Yo,l) with every possible eddy event. To this end, the quantityis interpreted as an eddy
velocity andpl®/1? is interpreted as a measure of the energy of eddy motion. fEsrdiert, this
energy is equated to an appropriate measure of the eddyydressgd on the current flow state. The
energy measure used here is the current available enelgg iwb velocity components, minus an
energy penalty that reflects viscous dissipation effed¢tetd that this choice is slightly different
than that used in [7].)

Based on these considerations, we write

('T)Z ~ B+ -2 ). an

16



Given Eg. (17), the time scaledor all possible eddies can be translated into an eventediata-
butionA, defined as

L C _ Cv Vi k| 2 Vj 2
“X“"”:m—ﬁ () (V) -2 4o

whereC is the ODT model parameter that controls the overall evenfifency. If the argument of
the square root is negative, the eddy is deemed to be supdriegviscous damping ardis taken

to be zero for that eddy. In the square root term of Eq. (18),qiantities preceding involve
groups that have the form of a Reynolds numlxecan be viewed in this context as a parameter
controlling the threshold Reynolds number for eddy turmove

An stand-alone applications, the maximum lenithyx is constrained by the boundary condi-
tions. However, in ODTLES, maxis conceptualized as being linked to the size of the smalest
eddies resolvable by the LES mesh. For this reason its sgeafin becomes part of the model.

2.2.1 Ensemble Mean Closure (EMC) of unresolved ODT

Just as a numerical DNS must fully resolve all 3D length anektscales in order to be valid, so
must the ODT model fully resolve all 1D length and time scakes high-Reynolds-number flows
this resolution requirement dictates very refined grids, texen in only 1D, are computationally
expensive. Recently, McDermott et al. [8] developed a gmatddiffusion based LES closure
model which, in form, resembles a Smagorinsky-type eddgogasy model, but which is derived
entirely from ODT. Called ensemble mean closure (EMC), #piproach was born of a desire to
better understand ODT and to provide a theoretical basihéempirically observed rate constant
for LES/ODT in isotropic turbulence simulations. The resg model is a legitimate LES subgrid
model on its own, and eliminates the laminar flow finite-eddcosity problem which plagues the
constant-coefficient Smagorinsky model. Here, we employCEd a subgrid model for ODT. This
is very useful in the context of the ODTLES model as it rema¥vesrequirement that the ODT
mesh resolve the flow to the Kolmogorov scale. Later we withgkhat for high-Reynolds-number
flows this results in considerable costs savings while gitire analyst almost complete freedom
to choose the degree to which the sub-LES-grid scales avkveelsby ODT in the simulation.

The EMC subgrid -tress closure is based on the mappings areddstale physics employed
in ODT. A simplified ODT model is envisioned in which eddy eteonly act upon the LES-
resolved velocity field and stresses are based on ensendrkgad momentum transport by ODT
eddy events, rather than the usual stochastic eddy sampigngentioned, the resulting model is
analogous to conventional gradient-diffusion based LESuwies such as the constant-coefficient
Smagorinsky model.

The form of the ensemble closure (which is independent ofitiearization) is obtained by
accounting for all eddy events which can affect a given locak, on an ODT line. First, we find
the amount of momentum displaced acrgsfor an eddy parameterized by its starting location,
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Xo, and length scalé, The amount of momentum displaceflx; %o, 1), is then multiplied by the
event-rate density of the eddy, given byl4r, wheret is the eddy time scale. With this, the form
of the stress can be written as

Imax X .
R(X) = /lmm N q’(’i’fi"")d%m. (19)

The integration limits reflect the range &f and| space which can possibly affext The
maximum and minimum eddy lengths to be represented by the EM@zl are denotel},ax and
Imin. Completion of the model requires specification of the dispment functio and the eddy
time scalet, which are functions of the particular ODT model employedisTcan be directly
applied to calculate an ODT-based subgrid eddy viscositysetorm is analogous to Eq. (10).

Neglecting the small viscous cut-off effect (typically figile for high Reynolds numbers),
the EMC-based ODT subgrid eddy viscosity for the 2-compo@#»T model used here is written

as
) (20)

whereC is the ODT eddy rate constai@emcis an EMC model coefficient, arlghax is the largest
eddy length NOT resolved by the ODT discretization. We nloé Eq. 20 is slightly different than
the analogous equation tested in [8], and thus the valudgeohbdel coefficients are not expected
to be the same.

v
an

ovj

Hs = pCCemc(lmaX)2 ( X,

Based on the triplet map, the smallest eddy size that candmévesl by ODT is always &x.
Thuslmaxis always known from the ODT grid size.

If we include the EMC model, the evolution equation for 2-gmment stand-alone ODT can
now be written as

ovy 0 ovi\

wherevs = Us/p, andvs s given by Eq. 20.

2.3 The ODTLES Evolution Equations

In ODTLES, local 3D coupling among the different velocityngponents is captured by adding
several additional terms to the right-hand-side (RHS) efdtand-alone ODT equation, Eq. (21).
Global 3D coupling is achieved by defining an LES-scale pnesfeld that is resolved on the 3D
mesh and by requiring a 3D continuity equation to be satisfied
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The ODTLES evolution equations on each line in directiqk=1-3) that will be solved for the
individual ODT velocity componenis(i # k) can be written conceptually as:

% - aixk <(v +V3k)%v—)|::) = —(LESPres); — (LESConv)y; + (3D_VisC)x;- (22)

Here, as in all equations to follow (unless specifically dpteepeated indices are NOT used to
imply summation.

In contrast to the stand-alone ODT model, where the RHS ¢ #eis revised equation has three
additional terms. These terms will be used to model the L&Sespressure-gradient, LES-scale
convection, and multi-dimensional viscous effects on twion of the ODT velocity compo-
nents.

Before describing a model for each of these additional tewesdefine a set of quantities used
in the model formulation.

Definitions

o Numerical difference operator acting on the LES scale
= Numerical difference operator acting on the ODT scale

P LES-scale pressure associated with each 3D control volemessure is
not defined on the individual ODT lines.

T A time scale which should be of order the eddy turnover tioratie smallest
3D eddies resolved on the 3D mesh. In all calculations peréorhere, T is set
equal to the LES time steAT

AX The width of a 3D control volume.
Ug A time average ofy; (i # K) over time-scale T, where
_ 1t
Uk = —/ Vi idt. (23)
T Ji-1
U k A time-averaged velocity parallel to ODT lirkethat is computed by requiring a

ux i-based continuity equation to be satisfied in each ODT suitralovolume
associated with the ODT points on likeThese sub-control volumes and the spatial
locations of other ODT velocities are illustrated in Figdre
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_ e X (U Ol |
Bx() = Bu(0) = [ (G L) (24)

wherei, |,k is any permutation of the indices (1,2,3).

ﬁzJ(i—l,l,k) o

: A
Uy 50,1, k) Uy, (i1, k)

Figure 4. Orientation ofuy relative touy; for ak=2 line.

A spatial average over a control volume of the time-averagdakity
componenty;.

- 05 _
Ui = A% ] - k'd)<k+AX| /AX Uy idx (25)

wherei, k, | is any permutation of the indices (1,2,3).

Hereafter we refer to this temporally and spatially filtevetbcity as the “LES” velocity field. It's
location, consistent with the location of thg; odt velocities, is geometrically located on control
volume faces as per a standard staggered-grid scheme.

2.3.1 3D continuity and the LES-scale pressure-gradient ten

Conservation of mass is enforced in the 3D domain by requitie LES velocity field to satisfy
the following discrete continuity equation on the LES grid:

dUp dU, 3
1, %2 s

6X1 6X2 6X3 =0 (26)
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whereU; is defined in terms of the ODT velocity components as desgrdb®ve. This LES-scale
continuity equation is enforced indirectly through thegsare field. The pressure field couples to
the velocity field through a pressure gradient term in théugiam equations for the ODT velocity
components (i.e., the momentum conservation equationsPOTLES, the LES-scale pressure
gradient term is modeled as:

(LESPres) (27)

_ %P
i= 5)(i .
2.3.2 LES-scale convection term

The purpose of the LES-scale convection term is to model Bheg@sport of momentum due to
the resolved velocity field. This transport is distinct fromat due to eddy events, whose purpose
is to model the unresolved turbulent stirring.

In the current model, the LES-scale convection term is

o _ o _ 0 _
(LESConv)ki = —6_Xi(uk,|Vk,|) - 6_Xj(uk,ij,|> - a_xk(uk,ka,|> (28)

where the time-averaged velocity field is used for the advgetelocities, as in [11]

2.3.3 Multi-dimensional viscous term

Diffusional transport parallel to the ODT line is modeledthy fully resolved viscous term that
appears as the second term on the LHS of Eq. (22). The purgasgraducing an additional
viscous term is to model diffusional transport of momentunthie two coordinate directions or-
thogonal to the ODT line. In addition, this model will cotuite to the local energy dissipation
rate due to viscous effects. For any line parallel toklseordinate (hereafter denotedt &ne), the
two directions that must be accounted for are the longitidiirection (to be denoted here with
the subscript i) and the transverse direction (to be denwtitdthe subscript j). Because velocity
gradients are not locally resolved in these two directiaresseek the best available information to
approximate the required terms.

To model the transverse direction, we leverage the factitbamponent velocity gradients in
the j-direction are fully resolved on ajtdirection lines, and these lines intersektlane everyAX.
Therefore, we can model the transverse term at any poinhek by interpolation from the nearest
two j-line intersection points. This approximation is convemjeonsistent with the concept that
ODT values are point values, and means that the velocityigmedfelt by the ODT points on
line k will have the proper magnitude and statistical variationowdver, a small momentum-
conservation error is also introduced by this approxinmabecause the sum of all momentum
fluxes to/from all ODT points is no longer balanced by condtam. This error could be corrected
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with the introduction of a supplementary LES-scale momenbalance equation, but was not
deemed necessary for the present work as the error intrddscgnall, symmetric around zero,
and tends to zero with time averaging.

Because we have chosen to use a two-component ODT mode# {iko®y the two components
orthogonal to the line-direction), resolved velocity geads in the longitudinal direction are not
available at intersection points. Therefore, gradientthis direction must be found using finite
differences on the LES scale. Although we expect the overalérror introduced by this approxi-
mation to be small in most cases, alternative ways to acdoultttis term are being looked at. For
example, if a three-component ODT model were being used, ititerpolation from the nearest
two k-line intersection points (analogous to how the transvesa is treated) would be possible.

Given the modeling choices just described, the additioisalous transport term for each of the
two velocity components ; defined on ODT liné, can be written as

o 6Vk7i

. 9 0V'.'
(3D_VISC)k7i = 6—)(] ((V+V3j)Wjj’l> |jk—interp+ 5_)(|(V o )

(29)

where the suffiX jk_interp denotes evaluation by interpolation between values locait¢-k line-
intersection points.

2.3.4 Summary of the ODTLES Evolution Equations

The complete equation set describing the evolution of th& (ES velocity components; be-
tween eddy events can now be written. In these equakalenotes an ODT line in coordinate
directionk, and the indices, j,k are any permutation of the indices (1,2,3).

b Vki o
ot 0Oxg <( +Vsk) X ) o%;
— g (UkiVii) = 5_2,- (O Vi) — g (TekVici)

0 ovij S /v OV
+a (V4 Vs ) 5 | ik—interp + ¢ (V5 )

subject to the 3D continuity constraint that

U1 dUp | 8U:
1, 2 s

6X1 6X2 6X3 0 (3 1)

whereuy andU; are defined in terms of the ODT velocity componentsby Egs. (23) and (25):
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At this point it is instructive to consider certain limitircases of the LESODT evolution equa-
tions.

First consider the limiting case in which the length scdle and time scale T go to zero.
Here ODT is viewed in the space-time continuum, and no edéptsvoccur because all motion
is resolved in 3D. In this casg; = ux; = U;. Therefore Eq. (30) reduces to two identical copies
of the incompressible form of the Navier-Stokes equatians, Eq. (31) reduces to the standard
incompressible continuity equation.

Next consider the opposite case where the length séefgsand time scale T go to infinity.
Under these conditions all of the LES scale convective aadouis transport terms on the RHS of
Eg. (30) either become constant or go to zero, and Eq. (3Drbes meaningless. What remains
are a set of 1D equations that are the evolution equatioress $tand-alone ODT model.

2.3.5 Numerical Procedure

To begin a calculation, initial values fog; andu,; must be specified on all ODT lines subject to
the constraint that the LES-scale continuity equationtis®ad. The LES pressure fieRlis also
initialized to zero.

The ODTLES equations are integrated from LES time-stép n+1, through the following
sequence of steps.

(1) Evolve the ODT equations in time (using the ODT time-sd)pon each individual ODT
line over a time period equal to the LES time step.

Remark: The numerical implementation of an ODT simulation involibsee subprocesses:
molecular evolution, eddy selection, and eddy implemantatn the calculations performed here
Eqg. (22) is time-advanced each time the eddy event-ratghiison is sampled, leading to very
small ODT time steps. Therefore first-order explicit timeegration coupled with second-order
central differencing of all other terms is employed. Thegeaure for eddy selection and eddy
implementation is described in [7] (also see [11, 12]).

(2) Compute the intermediate valuesfﬁjf1 andljﬂkj1 from the definitions given in Egs. (23)
and (25). The hat is used here to denote the intermediatesraitthese values.

(3) Foreach ODT line compute ODT resolved values for a smoatkinuous functiorf (Jrk]jrl)k,i
whose cell average matches the LES cell average value2E)qAn efficient procedure for doing
this is described in Appendix A. Then, on each line and at €of point location, compute and
store the following difference quantities,

Vi = ki — gy + (32)
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and
T (Y (33)

Remark: These differences will be used to reconstruct the ODT vgldelds after the LES
velocity field has been adjusted to a divergence-free dtadeigh a pressure-projection step.

(4) Solve the following discrete Poisson equation for thespure correctioq.

antl

R0 1) &Y;
oXO% (E) OX; (34)

where the repeated indices are used in this equation to isyshynation in the standard way.

(5) Compute the LES pressure and velocity fields at tivag via the following pressure and
velocity correction equations.

Pl =Py, (35)

gt G ar (29
UML=U,  —AT (éxi ) (36)

Remark: Steps 4 and 5 correspond to a standard projection step tfuaces the LES continuity
constraint, Eq. (31).

(6) Compute the corrected valuesupfi andvi; based on the ODT reconstruction equations
Gt = FUM D + 0 (37)
and
Vii = Uit Vi (38)

Remark: The adjusted values of; anduy; are now consistent with the new pressure-projected
LES velocity field. This reconstruction procedure is desmjrso that high-wave-number (i.e.
small-scale) fluctuations resolved at the ODT level ardixgly unaffected by this procedure.

(6) Compute the values ok per Eq. (24).

This completes the LES time-step cycle.
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2.3.6 Implicit LES momentum equation

So far, we have described ODTLES primarily from the ODT pecsipe. However, it can also be
cast in the form of a volume-balance LES model as describ&thymann. In the volume-balance
LES method the averaged quantities correspond to a dissetd control volumes that are fixed
in space. Here we extend this concept into the temporal dotmaviewing the LES quantities
as also time-averaged over a time scale T, where T is of ohdeLES time stefAT. Thus in
ODTLES, thel; velocities can be properly viewed as LES quantities.

BecausdJ; are defined in terms of thej, a separate LES-scale momentum equation is not
directly solved. However, by construction an LES-scale raptum equation is implicitly being
satisfied by the formulation. This equation can be found yperly summing the individual
contributions made by each ODT velocity equation to the geanU; over a discrete LES time
step. These changes are due to four processes: LES-scateigrgradients, viscous diffusion
across control volume surfaces, LES-scale advectivegahacross control volume surfaces, and
momentum transport due to eddy events whose range exteruds aontrol volume surfaces. The
first three of these processes occur continuously in timeaamdssociated with the ODT evolution
equation, Eg. (30). They can therefore be properly expdeaseaates. In contrast, eddy events
happen at random epochs, and their effect must be repredgénteigh a summation.
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3 Simulations of Decaying Isotropic Turbulent Flow

For many years the simulation of decaying isotropic turbuflew has served as an important but
relatively simple test problem for turbulence models, tiesy and computer codes. It is an excel-
lent first test because the problem is posed in a fully peziddimain and complications that arise
near solid walls are avoided. Although the idealized coodg are cast as a stationary problem
that is for practical purposes unachievable in an experins@ace-time correlation measurements
from the nearly isotropic turbulent flow downstream of a taggrid provide an excellent approx-
imation. This is because Taylor’s hypothesis can be uselddw shat spatially decaying grid tur-
bulence is analogous to temporally decaying turbulencesimadially fixed region. Important data
sets include the classic experiment by Comte-Bellot andstof3] (hereafter referred to as CBC)
and the more recent work of Kang, Chester and Meneveau [bf(tienoted KCM). The CBC data
is very well known and has been used in a large number of LES8estu However, the Reynolds
number is quite lowRe, = 72). The more recent experiment of KCM was specifically desip
as an update to the CBC results based on turbulence at a Rgkieolds numbeRe, = 720) and
includes detailed measurements that are of particularasit¢éo the LES community.

In this section we compare ODTLES simulations with the KCNdenxmental data.

3.1 Geometry and Initial Conditions

The LES domain is a cube with edge lengtlaxy = 2. The 3D Cartesian mesh has an equal mesh
spacingAX = Lpox/Nies in all three directions. Most calculations are performedaorelatively
coarse LES mesh size Nf ;= 323, but a comparison is also made witf} = 64°. The ODT mesh
size is varied frontNyq; = 128 to 1024 to illustrate the impact of ODT mesh resolutionasults and
cost. The initial condition for the LES velocity field is geated by superimposing Fourier modes
with random phases to match the initial 3D energy spectruth@fexperimental data. Periodic
boundary conditions are applied in all three directions.d&gelop coherent turbulent structure
in the initial field, the random modes are allowed to evolved®hort time (several time steps),
during which time the energy decays. Energy is then injebsek into the Fourier modes such
that the spectrum of the initial condition again matchesgpectrum of the initial experimental
data. This process is repeated several times until the eohstructures stabilize.

Without DNS data, the initialization of the ODT field is prebtatic. The procedure followed
here is as follows. The ODT velocity field is first set equalftd@;)x;, a smooth continuous
function whose cell average matches the initialized LE$ adrage values (see Eq. ()25) and
Appendix A). The ODTLES evolution equations, without theactive terms, are then solved over
a series of LES time steps. However, at the end of each timpetsteODT velocity field is adjusted
(as explained in Section 2.3.5) to be consistent with thgimmad LES field. In this manner the ODT
resolved substructure is built up while maintaining the samitial LES velocity field. As will be
shown below, this method is only partially successful atodticing ODT resolved substructure
into the initial state. As a result, the ODT resolved velpspectrum is not well represented until
later times in the calculations shown here.
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3.2 Comparisons with the experimental data of Kang et al. [5]
3.2.1 Reference Calculations

Table 1 lists the key mesh and model parameters of the foereneée calculations performed with
ODTLES. These runs illustrate the impact of increasing ti®racale resolution while main-
taining the same LES-scale mesh. All other parameters ddedoastant and equal to values
determined from theoretical, heuristic or numerical cdagations. In the next subsection, these
other model parameters are varied to illustrate how seegtie results are to these values.

Table 1. Key Parameters for the Reference Set of Calculations

Run| Nies | Nodt | Neell | Lmax/AX | AT /ATy C/\/@- Cemc
1 32 | 128 4 4 0.1 1.0 .002
2 32 | 256 8 4 0.1 1.0 .002
3 32 | 512 | 16 4 0.1 1.0 .002
4 32 | 1024| 32 4 0.1 1.0 .002

Figure 5 shows the total LES and total ODT resolved kinetargyas a function of time during
all four reference calculations. In each case, the LES vedatnergy is held constant during the
ODT initialization period (from t=-0.75 to 0 sec.), but théDD resolved energy grows until a
plateau is reached. As can be clearly seen, higher valubgpfallow a larger amount of the
sub-grid kinetic energy to be resolved. At time t=0 sec, tirbulent flow is allowed to evolve
according to the full set of equations and its energy rapitiigays. Although all four runs are
quite similar, it can be seen that the LES-resolved energgydfor Run 1 is a little bit slower than
for the others. This is because the smallest eddies are imag kesolved whemMN = 4. These
unresolved eddy events, although not dominant, contribgtaall amount to the dynamic inviscid
process by which energy is transferred out of the LES resddiedd.

Further insight into what is happening during the ODT idiiation period can be gleaned
from Fig. 6. Here we see a plot of the transverse one-dimeabkanergy spectriy, at different
times during the initialization period compared to the ekpental data. Initially, the high-wave-
number velocity spectra correspond to the 3D box-filterédesbased on the smooth interpolating
(or reconstruction) functiori(U;)k ;. However, the energy in the high wave-numbers very quickly
smooths out and begins to rise. The values plateau at abautienof magnitude lower than the
data because they are being constrained to match the loe-mawber 3D LES spectrum.

The LES-resolved 3D energy spectrum from each references mompared to the experimen-
tal data in Fig. 7. Since the LES velocity field is initializea spectrally match the X/M = 20
experimental data, all four cases follow data exactly owh&LES Nyquist limit at this point. At
the later two times, the LES-resolved ODTLES results do naticinthe data exactly because the
LES-resolved field is a spatially filtered quantity (similara box filter) that must quickly drop to
zero as the Nyquist limit is passed. However, with this coestion taken into account, all four
cases compare well with the data, and differences betwesn #ne very minor. This is another
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indication that the eddy events are properly transferrimgrgy from the low wave-numbers (re-
solved by the LES velocities) to the higher wave-numberslves only on the ODT domain. The
slightly higher values seen for run 1 reflect the previousgntioned fact that the effects of the
smallest eddy events are missing in this case (due to thee@iDT mesh resolution).

The next four figures compare the transverse 1D energy sygeetfrom runs 1-4 with the data
from the four experimental data stations. (Note that bezdlis two ODT velocity components
are normal to each line, the longitudinal 1D energy spediyrcannot be directly computed.) In
these figures the experimental data is plotted as well asdWpence lines. The smaller vertical
line corresponds to the wave-number of the wind tunnel hétglAt wave-numbers approaching
this value, and lower, the turbulence in the experiment issodropic, and thus the data is not valid
for our comparison (see Kang et al. [5]) for details). Thesotvertical line shown corresponds to
the LES Nyquist limit.

Figure 8 corresponds to the initialized state at time zelthodigh the 3D spectrum is exactly
matched at this point in time, for reasons described prelyaine 1D spectrum is not. Therefore
a noticeable dip in the spectrum is seen at the LES Nyquist. lim Figures 9 to 11 we see the
1D spectrum recover nicely as the flow evolves and energy tr@riow wave number regions
cascades down into the high wave-numbers. By the third amdhfatations the 1D spectra from
each run does a very good job of following the experimenttd dat to the limits of their respective
resolutions.

In each of these runs energy is being dissipated by viscdesteft the highest resolved wave
numbers. This is where the EMC model affects the problemyigimg the amount of additional
eddy viscosity needed to account for the eddies not beinficggpmodeled. Note that although
the EMC model constariemcis invariant, the eddy viscosity scales on the square of tiv®ff
length-scaldax (see Eq. (20))Imaxis defined as the largest unresolved eddy event, which is just
larger than the smallest resolved eddy event. Since thdeshatldy event that can be captured is
equal to &x, we know thatlhax = Lmin = 6AX. In the next sub-section, the effect of turning the
EMC model off will be illustrated, as well as the sensitivitiithe results to the value specified for

Ceme
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3.2.2 Sensitivity to Model parameters

A series of additional runs indicate the sensitivity of theults to mesh size and model parameters
used in ODTLES. These runs are listed in Table 2.

Table 2. Calculations to Test Model Parameter Sensitivity

Run | Nies | Nodt | Neell | Lmax/AX | AT /ATy C/\/@ Cemc
5 64 | 256 | 4 4 0.1 1.0 .002
6 64 | 512 | 8 4 0.1 1.0 .002
7 32 | 256 | 8 3 0.1 1.0 .002
8 32 | 256 | 8 3 0.1 1.3 .002
9 32 | 256 | 8 6 0.1 1.0 .002
10 | 32 | 256 | 8 6 0.1 0.77 .002
11 | 32 | 128 | 4 4 0.2 1.0 .002
12 | 32 | 128 | 4 4 0.33 1.0 .002
13 | 32 | 256 | 8 4 0.1 1.0 0
14 | 32 | 256 | 8 4 0.1 1.0 .0025

Runs 5 and 6 essentially repeat runs 2 and 3, but with twiceEBSresolution. All other code
parameters are kept the same. In Figures 12 and 13 the 3Dyesegtra and the 1D energy
spectra are compared. As expected, the higher resolutrefiésted in a larger portion of the 3D
spectral energy being resolved on the LES grid. Howeverlihspectra at the last experimental
data point (X/M=48) compare very closely. The only diffecemoted in Figure 13 is a slight
suppression of thEy, spectra in théNes = 64 runs in the region between the two Nyquist limits.
The reason for this small artifact is unclear. Otherwisediiwes appear to lie right on top of one
another.

As has been more thoroughly discussed by McDermott [8], Hiees ofLyax andC control
the rate at which lower wave-number energy resolved by th inésh is transferred to the higher
wave-number energy resolved only on the 1D grid. This casche@nergy is an inviscid process
that, in ODTLES, is affected by both the overall rate at wheclly-events occur and the eddy-
size distribution. Therefore, the energy decay rate itdedfs not uniquely determine the values
of C andLax Although some interesting theoretical work [8] has beemgieted that provides
certain constraints, the values chosen here are basedpmaeuristic arguments and numerical
experiments. The purpose of Runs 7-10 is to illustrate tinsiteity of the calculations to the
value chosen foLnax and how this choice affects the valuethat must be specified to obtain
the correct decay rate.

From a conceptual standpointyax should mark the length scale between the smallest real
3D eddies resolved on the 3D LES mesh, and those eddies tisitmunodeled by ODT eddy
events. Since the ODTLES method is cast in a volume-balaootext (that acts in physical
space), spectral methods are not applicable and the valyg,e€annot be exactly specified from
a numerical resolution standpoint. However, it seems resse to consider the Nyquist limit
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(2AX) as a lower bound fokLmay and for practical purposes we would expect it to be at least
3AX. For the reference calculations discussed abbygx = 4 was chosen. With this choice, it
was found that the value & which yielded the correct energy decay rate wad 454, which
agrees well with the theory developed in[8]. In Runs 7 thtoli§ we consider the effect of using
Lmax= 3 andLmax= 6.

The effect of changind.max on the LES-resolved and ODT-resolved kinetic energy is show
in Figures 14 and 15. Several things can be noticed in loo&argfully at these figures. First,
decreasindLmaxreduces both the ODT-resolved energy obtained during thalization phase and
the subsequent decay rate during the evolution phase. &ahyencreasind.may increases both
the ODT resolved energy obtained during the initializatdrase and the subsequent decay rate
during the evolution phase. To recover the same decay rateibES resolved energy, the ODT
rate constant must also be adjusted. Whggy was reduced to&8X, increasingC by 30 percent
was required. Whebhyaxwas increased to 8X, C had to be lowered by 23 percent.

The trends described in reference to Figures 14 and 15 areadlscted in the results shown in
Figures 16 and 17. These figures show the 3D energy spectlaed®n the LES mesh for runs
7-10, and compare them with run 2. Here we can note that tketedf these parameter variations
is strongest in the higher wave-number regions. This is @epebecause this is the region where
the larger-scale eddy events have an impact on the resolyéd\ structures.

Figures 18 and 19 complete the story by showing the ODT reddl\D spectra at experiment
station X/M=48 for runs 7-10, and compare them with run 2haitgh the effect is small, different
combinations of ,,axandC are seen to yield slightly different slopes. This may bewiseffurther
refining what the most appropriate valued gf,x andC should be.

Runs 11 and 12 were made to verify that the LES time step talkengithe reference runs was
small enough. These runs confirmed that the time step wasisatfy small because results for
both these runs were statistically identical in all key &sp&o reference run 1. For this reason, no
plots are shown concerning these runs.

Runs 13 and 14 explore the impact of the EMC model and its &gsdoconstanCeme

In Run 13, the EMC model was turned off. This resulted in adagergy buildup in the high-
wave-number region because the ODT resolution was not iuffito dissipate the energy at the
proper scales. This is reflected in Figure 20, where the 1Dggnspectra at two times in the
calculation are plotted for runs with and without the EMC relaktive. As can be seen, the effect
is dramatic and totally distorts the solution.

In Figure 21 we compare the 1D energy spectra at the end oirthetagion time period for two
different values of the EMC model consta@t,,.= .0020 (the reference value), a@gn.= .0025.
Results show that only the energy at the highest wave-nwidaffected by this change. Although
the difference is small, the slope obtained using the higalele appears to be more consistent with
the experimental data shown, suggesting that perhapsdheryalue is a better choice.
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Figure 13. Effect LES mesh resolution on 1D energy spe&ia
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Figure 14. Sensitivity of LES (lower curves) and ODT (higher
curves) resolved kinetic energy decay to redudipgy.
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Figure 15. Sensitivity of LES (lower curves) and ODT (higher
curves) resolved kinetic energy decay to increasifgk.
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A An efficient discrete reconstruction procedure that preseves
cell averages

Consider a 1D functiori (x), whose box-filtered values

U L 39
(XJ)_H X2 (x)dx (39)

are known atN uniformly spaced locations;, on a domain 6< x < L, whereh =L/N = (Xj4+1 —
Xj), and whose boundary conditiorig0) and f (L) are known.

We desire to find a well-behaved, smooth seViofM = KN, whereK = 2") values ofu(x;), at
uniformly spaced locationg, that exactly satisfy the relationship

i
U(xj):% Y ). (40)
i=(]

K
i=(j—1K

and which are consistent with the known boundary conditions

The algorithm described here computes a set of 2N valuegxf from the initial set of N
values ofU(x;). The process can be repeateell] more times to obtain the desired refinement
corresponding to any value of K.

To help understand the algorithm we refer the reader to Eigut, which illustrates a simple
case where N=3, and the functiditx) is assumed periodic. The values®f(x;), j=1,3 are
respectively, 4, 6, and 1.

Values ofu(x) are found through an iterative process that, by constmctéwvays enforces
Eq. (40). Each iteration step, a set of 2N "starred” valuégy;), are computed as

U(xj)+ f*(x;—h/2)

T (x-) = 5

(41)

U(xj)+ f*(xj+h/2)
2

U (Xiq) = (42)

wherei— andi+ denote, respectively, the first and second valueslo€tated in cell j, andf*
denotes a current iteration estimate of the interpolatédeviar u at the cell boundaries. These are
estimated in a manner to be explained next, except if theboelhdary corresponds to one of the
domain boundarie; = 0, L, and the boundary conditions féfx) are specified. In this case, we
simply setf*(0) = f(0), andf*(L) = f(L).
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On the first iteration, the values df'(x; —h/2) and f*(x; +h/2) are computed as a linear
interpolation at the midway points between thex; ), i.e.

U(xj) +U(xj-1)

5 (43)

£*(x; —h/2) =

U (Xj) +U(Xj+1)
2

t*(x +h/2) = (44)

At each succeeding iteration, they are computed by intatfpol between past iterate values of
u(x;) as follows:

£#(x; — hy2) = J04) FUGi--) (45)

f*(XJ + h/2) — U_(XH—) —i_ZLT(Xi—O—-‘—) (46)

Here,i++ denotes the value oif)+1, andi— denotes the value oi-§-1.

No matter how the values d¢f (xj —h/2) and f*(x; +h/2) are computed, the next iterate values
of u(x;) are always calculated by adding a correctijrio the starred valuesi;(x;), as follows.

(%) = 0*(%-) +C; (47)
U(%i1) = 0*(%i+) +Cj (48)
where

U(xi—) +Uu(xi+)
B (49)

Note that the value of; is calculated so that, by construction, Eq. (40) is idefiicatisfied.

The method converges rapidly as the iterations proceederieqre using this method in the
context of ODTLES suggests that four iterations are suffidier all practical purposes.

In the limit of large M, the method produces a smooth contirsepproximation of the function
f(x) that exactly satisfies the Eq. (39). Other approximatiomshEmgenerated using alternative
schemes and, in fact, an infinite number of solutions existvéVer, this method is computation-
ally fast, stable, and well behaved. Figure A.2 shows redusim performing the reconstruction
procedure for a case where N =16, M = 256, and the domain isgieri
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Figure A.1. Simple illustration of initial steps in the discrete
reconstruction procedure.

3 \ \ \
B .I'h.'-_ B box filtered values B
: "reconstructed" valugs
2 ) _
'. N =16
L . Y M = 256 (K=16, n = 4) i
N 5

Y EREPEN ‘\_

U . -. -0: 1
_v . : -'b: .
1 . : _
L . _
) | | b | | |
0 1 2 3 4 5 6

Figure A.2. Example discrete reconstruction for N = 16, M =
256.
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