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Abstract

Two methods for creating a hybrid level-set (LS) / particlethod for modeling surface
evolution during feature-scale etching and depositiorcgsees are developed and tested. The
first method supplements the LS method by introducing Lagjeanmarker points in regions of
high curvature. Once both the particle set and the LS fun@ie advanced in time, minimiza-
tion of certain objective functions adjusts the LS funct8mthat its zero contour is in closer
alignment with the particle locations. It was found that digective-minimization problem
was unexpectedly difficult to solve, and even when a solutimiid be found, the acquisition
of it proved more costly than simply expanding the basis s#t@LS function. The second
method explored is a novel explicit marker-particle mettiwat we have named the grid point



particle (GPP) approach. Although not a LS method, the GPRoaph has strong procedural
similarities to certain aspects of the LS approach. A keeispf the method is a surface redis-
cretization procedure—applied at each time step and basad@lobal background mesh—that
maintains a representation of the surface while naturaltyireg and subtracting surface dis-
cretization points as the surface evolves in time. This wekthas coded in 2-D, and tested on
a variety of surface evolution problems by using it in the 8BLS computer code. Results
shown for 2-D problems illustrate the effectiveness of thethd and highlight some notable
advantages in accuracy over the LS method. Generalizinghgibod to 3D is discussed but

not implemented.
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LDRD Final Report: On the
development of hybrid level-set/particle
methods for modeling surface evolution

during feature-scale etching and
deposition processes

1 Introduction

The problem of representing accurately the temporal eiiwdf a moving interface is a frequent
one when modeling many different physical phenomena inetuithterfacial fluid mechanics, and
materials science just to name two. The interest here is ¢leel 1o model accurately and re-
liably the evolving solid/gas interfaces in MEMS fabricatiprocesses. What's modeled is the
formation of usually a single component, partially consted, of a device called a feature. The
manufacturing processes in question are classed as egpesition or etch processes. The classes
are identified by the net addition or subtraction of matetaugh often in each case there is a
competition between material deposition by chemistry aatenial removal by chemistry and ion
sputtering. In this report we describe results from a smBIRD-funded research effort that has
explored several ideas for creating a hybrid level-set (Urticle method for modeling surface
evolution during feature scale etching and depositiongsses.

1.1 Motivation

Theoretical modeling of the detailed surface chemistry @macomitant surface evolutions dur-
ing microsystem fabrication processes has great potdatiahproving surface micro-machining
(SMM) based process fabrication technologies. A fundaai@sipect of this problem is the ability
to model accurately large changes in surface topology tbatiroduring etching and deposition
processes. The level-set method is one viable method dus &bility to model such changes
reliably without user interaction or other ad hoc treatrserk potential disadvantage of the LS
method is that the spatial accuracy is such that very refined o regions of high curvature must
be used to maintain model fidelity.

1.2 Quck Review of Free-Boundary Modeling

A variety of both explicit and implicit methods for modelimgterface evolution have been de-
veloped over the years. Explicit, or so-called Lagrangiathods represent the interface by a
collection of discrete points or material filaments whiclarghmaterial coordinates with the sur-
face, and which are advected with the velocity of the surfadese methods can be classified as



either front-tracking methods [2]—where the surface igeepnted by contiguous material fila-
ments, or marker-point methods [9]—where the surface isesgmted by a collection of points on
it. Implicit, or so-called Eulerian methods, such as themo-of-fluid [7] and the level-set method
[9], define the interface implicitly by a scalar quantity fmavhich the interface can be deduced
locally on a stationary grid. Each of these approaches hésyar advantages and disadvantages,
and the problem of interface tracking continues to be an@iraative research [8].

For problems with large topological changes, such as mawraocthe feature length-scale
modeling of MEMS and microprocessor fabrication procestes level-set method has distinct
advantages. In particular, the merging or pinching-off afiding surfaces is handled naturally
withoutad hoc rules or the necessity of user interference.

In the level-set method, a domain-spanning signed distant®el-set functiong, is defined:;
the zero-value contour, or level set, of which conforms &f#ature surface. The level-set function
is evolved by solving the scalar partial-differential etjoa,

0Q
5 +v-Op=0 (1)
over the volume and integrating through time. The velogityn Equation 1 is called the extension
velocity and is defined over the entire domain. The extengaocity must be chosen so that the
level set ofg evolves in such a way that it remains true to the evolutiorhefghysical surface;
i.e. itis chosen based on the velocity of the surface—the dapost etch rate in our case. The
level set method avoids the debilitations of the explicitimoels because the mesh which is used
to solve Equation 1 does not deform, so grid-distortionassare avoided. Likewise, because a
volume-defined function is evolved, merging surfaces dacnedite problems in the method.

When the level-set method is employed, errors can accrieiodmputed shapes and locations
of the evolving surface from two sources. First, when thaeigdistance function is represented
by a finite set of basis functions, as it must be in computerdempentations of the method, in-
sufficient resolution from the use of too few basis functiofshe signed distance function can
result in an inaccurate resolution of the surface. This canifest itself as an artificial rounding
or smoothing of corner regions, and can only be improved kyctistly addition of more basis
functionsi.e. the mesh must be refined. Figure 1 illustrates this for thalizied problem of uni-
form deposition near convex and concave corner regionsewisde, if the extension velocity is
not chosen perfectly, the interface will not evolve faithfuo that which the physics demands.
Lagrangian approaches, such as front tracking or markiet-peethods, can represent regions of
high surface curvature and evolve surfaces with greatarracg, but require complicatesdi hoc
treatments when surfaces merge or pinch-off. This leaddiahility problems on implementation
that can require significant user interaction.

To model feature-scale MEMS fabrication processes acelyrat is imperative that both the
high-curvature and the merging/pinch-off events be adelyraepresented. However, as described
above, no one method is completely satisfactory under ttws&raints. In a recent Sandia project,
these issues were carefully considered and the level-dbboh@/as chosen as the best alternative
for a new feature-scale model called ChISELS of both 2D anBEMS fabrication technologies.
To capture the evolution of sharp corners and edges, veryfashes created using locally adaptive
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(a) Deposition on an external (convex) corner. (b) Deposition on an internal (concave) corner.

Figure 1. lllustration of the effect of grid refinement on level-set
error near corners.

meshing techniques must be generated to minimize the gfdéartificial rounding. Experience
with ChISELS suggests that the resolution required by theldset method to capture the sharp
corner regions is much higher than the resolution neededhdspecies transport and reaction
models to resolve spatial variations in the surface growath.r At present, accurately resolving
many 3D problems of interest requires considerable contiputly cost. To be parsimonious
with computing resources, it is desirable to develop a neethat represents the feature with the
fewest number of surface elements required to model aayrtéie surface’s evolution while still
resolving regions of high curvature.

1.3 Research Goals

Recently, a hybrid particle/level-set method was develdpe[1] to improve the accuracy of the
standard level-set method. In their approach, a large nuofdeagrangian marker particles are
randomly placed on each side of an interface. If marker gasiinitially seeded on one side
of the interface are found on the opposite side after a bmigfval of time integration, they are
flagged. The flagged patrticles are used to correct the letdliaction based on their location
relative to the interface as represented by the uncorréetetiset function. Their hybrid method,
however, can be quite expensive requiring thousands oicfestto work well, and would not

reduce computational cost appreciably, if at all, in theligapions of interest here. The thrust of
the LDRD research described here was to explore the hyhtidiz concept further in hopes of
developing an improved approach for modeling featureesetdhing and deposition processes.



After evaluating a variety of possible strategies, two gleare developed and tested. The first
method, described in Section 2, supplements the LS methadtitmducing Lagrangian marker
points in regions of high curvature. Once both the partieleand the LS function have been
advanced in time, minimization of certain objective funog adjusts the LS function so that its
zero contour is as close as possible to the particle locatibmfortunately, it was found that the
objective-minimization problem was often unexpectediallt to solve. Even when a solution
could be found, the acquisition of it sometimes proved mosglg than simply expanding the basis
set of the LS.

The second method explored is a novel particle method céfledyrid point particle (GPP)
method. This method is described in Section 3. Although rdb anethod, the GPP method has
steps that are similar to some steps of the LS method. A kegcagih the method is a surface
rediscretization procedure employed at each time steprhattains a more accurate representa-
tion. A 2D version of the method was developed in the ChiISE@®muter code and tested on a
variety of surface evolution problems. Results shown f@r groblems illustrate the effectiveness
of the method and highlight some significant advantageseed@and accuracy over the standard
LS method. Generalizing the method to 3D is discussed bubtmmemented.
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2 Method One

The first method to hybridize the level-set and particle mdghborrows ideas from curve fitting
and optimization. Whereas the method remains substantdkvel-set method, fix-ups to the
level-set function are made to help alleviate some of thedaeacies in ityiz, it alleviates inac-
curacies in integrating the first-order wave equation, Whwdels the evolution of the level-set
function, and those due to the construction of the so-caieension velocity field in Equation 1.
The following discussion assumes knowledge of the levetrsthod and how it is employed in
ChISELS; details are available in [6].

When modeling MEMS fabrication processes by the methodridestin [6], the surface must
be rendered for the transport calculations. This is donepsesenting the surface by elements as a
contiguous set of line segments or triangular patches. dbtiset of the computation, the surface
elements are user provided—the initial level-set functsocomputed from them. Otherwise, the
collection of surface elements is computed by solving ferzéro contour of the level-set function.
In either case, once an explicit representation of the serfeas been made, specified regions of
the surface—namely those where curvature is high comparedre tolerance—can be seeded
with particles at any density. So the surface has two reptasens: that of the level-set function
and locally that by a collection of surface-embedded plagic

A velocity is assigned to each surface element. The magnibdidhe velocity is equal to the
local growth or etch rate and the velocity’s direction isgii@l to the normal vector to the surface
element. Particles are assigned a velocity identical todhthe surface element in which it is
embedded.

Once a surface velocity field has been been assigned, tHeskevieinction is advanced by one
time step by the method reported in [10]. Simultaneouslstigdas are relocated according to

Xp (t+At) = Xp (t) + vpAt 2)

wherex, is the particle’s locationyp is the particle’s velocity andt is the time elapsed in the time
step. In general, the new location of the particles will m@bin the new level set. As itis assumed
here that particle representation of the surface is moneratethan the level-set representation, a
method has been devised to correct the level set so thahitheiclosest possible alliance with the
particle locations.

The level-set function is brought into closer accord witl ffarticle locations by minimizing a
pair of quadratic objective functions that are subject tangls, linear inequality constraint. the
first objective function is a least-squares fit of the levétsehe particle locationsjjz.

np—1
fi=min % (Wp—9(Xp))? )
p=0

wherenp is the number of particlesy is the level-set function evaluated at the spatial location
of the particlep. Yy, is the desired value of the level-set function at the partictation, which,
of course, equals zero. This objective function forces #re xalue contour o to be as close
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as possible—in a least-squares sense—to the locationg gfatticles, but it also admits a trivial
solution wherep= O for all values of. This malady is cured by a second objective function.

The second objective function is the integral over the vaurhthe square of the so-called
Eikonal equationyiz.

f=min | (|C0l2—1)%av. @

this function forces the gradient of the level-set functiomave as near as possible a unit magni-
tude throughout the domain. In regions where the gradiees thiave exactly a unit magnitude, it
meets the definition of a signed-distance function [9]. ilh@lates everywhere the possibility of a
trivial solution.

One linear constraint is added to ensure thhas a unique sign. The constraint is
/ 0¢°- OdV > 0 5)

whereq’ is the uncorrected level-set function. In order to solvegtablem with this constraint, a
slack variable is added to Equation 5:

g:/(D(pO-D(p—sz) dv=0 (6)

From Equations 3, 4 and 6, an equation set is formed and stivget the corrected level-set
function. The equation set is

g=0 (8)

wherewis a user-prescribed weight factaris a Lagrange Multiplier and only solutions wish> 0
are accepted.

Ultimately, the end goal of the hybridized method was to iowerupon inaccuracies attendant to
the level-set method when a finite basis set is used to ragréselevel-set function. Thus coarser
discretizations, i.e. fewer basis functions, could be &thhnd corresponding CPU savings real-
ized. As it turns out, however, the objective-minimizatpoblem proved unexpectedly difficult to
solve. Even with Newton linearization and an analyticablbé&an matrix, solutions often could not
be found. In addition to the newly written Newton solver, N{Bf, a Sandia-produced nonlinear
equation solver, a part of the Trilinos suite, was employéth equal success. It was determined
that, even when a solution could be found, the acquisitiahmbved so costly as to make it not a
viable alternative to expanding the basis set of the legtftmction representation.

12



3 A Grid-Point Particle Method for M odeling Surface
Evolution

In this section an explicit particle method is describednfamdeling the evolution of surfaces when
the surface velocities are always normal to the surfaces dalled the grid-point particle (GPP)
method because at each time step new surface marker padieescribed on the surface at the
nearest point to the grid points on a uniform grid. A high lewerview of the method is first
provided in section 3.1, followed by a detailed descriptio§ection 3.2. In this section the method
is illustrated in a sequence of three time steps. In the finggtep, the basic algorithm is described
by which a surface in motion is advanced in the model. Theelent two timesteps show how
the method handles two special cases that arise when mgdéliMS fabrication processes.

3.1 Modda Overview

The GPP method is defined by a sequential process that inedegpat various points in time, the
following key operations:

1. Surface discretization: A novel technique described here for creating a unique elisap-
proximation of any arbitrarily defined surface based on amgivackground mesh.

2. Calculation of surface element velocities: This consists of using an appropriate physics
model to calculate normal velocities on all discrete swef@lements. In problems of interest
here, these are etching and/or deposition models basedfacesand gas?phase chemical
reactions.

3. Element-to-point velocity transformation: A scheme for converting surface element veloci-
ties to equivalent surface point velocities.

4. Constrained Lagrangian movement: The displacement of surface points during a discrete
time step as constrained by certain geometric limits.

5. Surface reconciliation: A check for surface overlap locations and, if they exist,réencil-
iation of the new topology through local Boolean operations

To evolve the surface topology in time, a calculation prosearough a series of these steps.
Each calculation has two phases, an initialization phasgeaatime integration phase. The steps
associated with each of these phases are summarized below.

GPP Initialization Phase:

1. Input problem description and run parameters

13



e S: The initial surface
e h: The background mesh length scale
e & The subgrid resolution length scale

2. Perform surface discretization (Before evolving in tithe initial surface must be approxi-
mated by performing an initial surface discretization.)

GPP Time Integration Phase:
Begin time step

1. Calculate surface-element velocities
2. Convert surface-element velocities to point velocities

3. Constrain time-step with local information. Move poiotations based on velocity and time
step.

4. Reconcile surface topology if surface overlap is detecte

5. Construct a new discrete approximation of the surfacesiippming a surface discretization
operation.

End time step

3.2 Detailsof the GPP method

Details of the GPP method will be described by reference teri@s of figures illustrating each
substep taken in the overall algorithm as it proceeds duaimglustrative 2D calculation. The
calculation will begin with an initilization phase duringweh the user-specified intial state of the
surface is discretized based on the background mesh resoluthe calculation then proceeds
through three sequential time steps. The first time steptilites the basic method by which a
surface is advanced in the model. The second two time stepgdte how two important special
cases are handled; (1) how to treat multiple surfaces ingacel (2) how to treat multiple surfaces
in a cell when the surfaces merge or intersect, creating armahange in topology.

3.2.1 Initialization phase

Substep 1 A problem is initialized as illustrated in Figure 2. The bdarny between two
regions is defined by a fully-resolved surface indicatedh®ylilue line. A background mesh of
size h is shown by the vertical and horizontal grey lines. We define a subgrid resolution length

14
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Figure 2. Initialization of illustrative problem
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Figure 3. Surface-containing mesh cells
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Region A

Region B

Figure 4. Finding surface discretization points.

scales. The value ofe must be smaller than h, and for all calcultions performectkger 0.1h.
As will be described below, the values of h andffect the resolution of the surface discretization
algorithm.

Substep 2 (Figure 3) Every cell in the background mesh through which the surfasses is
identified and placed in a sequential list. If the surfacespaghrough a cell more than once, the
cell information is "cloned”. Since this does not occur hexelescription of what this entails and
its purpose will be discussed later.

Substep 3 (Figure 4) In each surface-containing cell, we conceptually draw e fiom each
corner mesh point to the nearest location on the surfacenitie cell. Because neighboring cells
share common corner points, multiple lines might be drawmfa single mesh point. However,
each of these lines is associated with a different surfacéaining cell. Note that at this stage
multiple surface points may lay on top of each other.

Substep 4 (Figure 5) Next we create a sequential set of unique surface pointssswtiated
line segments (surface elements) that define a new (redcsurfin this process, any surface
points that are withirg of each other are consolidated into a single point. Thisteseaur discrete
approximation to the original (blue) surface, which is nascdrded.

Substep 4 completes the initialization phase.

16
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Figure 5. Surface discretization.
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Region B

Figure 6. Compute surface-element velocities.

3.2.2 lllustrativetime step one

Substep 5 (Figure 6) We begin the time step by computing the velocity on each sarfa
element based on the physics of the problem at hand. For tfaeswchemistry involved in etching

and deposition of microsystems, the direction of each sarfaelocity is always normal to the

surface element.

Substep 6 (Figure 7) In this substep velocity vectors are calculated for eacfasarelement
endpoint. These must be calculated as a function of thecudi@ment velocities, and a variety of
alternatives can be constructed for doing this. Tests freweral choices showed that the procedure
used to compute these velocities is important to the ovacalliracy and robustness of the method.
In all our tests, we found the method described in the follmasubsection to be very satisfactory
for 2D problems.

A method to convert surface-element velocities to point velocities in 2D The method
begins by conceptually moving each line segment to a newitothased on its specified normal
velocity.

If neighboring line segments intersect, then the intersegioint defines the vector direction and
magnitude of the point shared by the two line segments.

Else,
we compute a velocity vector at each line segment endpoitfiteagector average of the velocities

on each of the two line segments (A and B) that share the pbims. defines the vector direction.

18



Region A

Region B

Figure 7. Compute surface-point velocity vectors from surface-
element velocities

The vector magnitudeM, is computed as

(|Val + |Va|)
2

(|Val + VB|)

M =
2

+ABS(SiN(¢)) * |MAX (Val, Va])) - (9)

whereq is the angle formed between line segments A and B, [¥hdlenotes the magnitude of
velocity vector V.

Substep 7 (Figure 8) At this stage we loop over each point on the surface and finleif t
velocity vector at this point intersects any of its neighbgfpoint velocity vectors. From this we

can compute a maximum time step for surface advancement basthe shortest distance to any
intersection point that may have been found.

Substep 8 (Figure 9) All surface points are now moved in a Lagrangian fashion t@ ne
locations based on the time step and their respective ¥igsciln this process element-to-point
connectivity is maintained, and a new surface locationgldanoted by blue line segments) is
thereby obtained. Also, any neighboring points that ardiwi¢ of each other are consolidated
into a single point.

Substep 9 (Figure 10) Every cell in the background mesh through which the surfame n
passes is identified and placed in a new sequential list.elkthface passes through a cell more
than once, the cell information is cloned. Once again, sihisedoes not occur here, a description
of this entails will be deferred.

This is our preliminary discrete approximation for the agd at time t #At. Up to this point,
the method can be thought of as essentially a string metleade(g. [cite Sethian]). However, we

19
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Figure 8. Constrain time step based on geometry.
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Figure 9. Lagrangian movement of points
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Figure 10. New surface-containing mesh cells.

have not yet adjusted the surface representation basesiretationship to the underlying grid, nor
described how this process and the underlying grid is usadidoess major topological changes
as they occur.

Substep10 (Figure11) In each surface-containing cell, we conceptually draweafiiom each
corner mesh point to the nearest location on the surfacenttie cell. Because neighboring cells
share common corner points, multiple lines might be drawmfa single mesh point. However,
each of these lines is associated with a different surfacéaining cell. Note that at this stage
multiple surface points may lay very close to or on top of eaitter.

Substep 11 (Figure 12) The surface discretization is completed after consoldgtny
surface points that are withinof each other. This new discrete representation of the ciita
shown in red. The blue preliminary representation of théaser(mostly hidden in Figure 12), is
now discarded.

The first time step in the time integration phase of the methoww finished.

3.2.3 lllustrativetime step two

Substeps 12-14 (Figure 13) The next three steps are now a repeat of what has been desscribe
previously in time step 1, and include calculating surfdeenent velocities based on the problem
physics, converting the surface element velocities tovedgemt surface point velocities, and the
determination of a maximum time step for surface advancetased on the shortest distance
to any intersection point that may have been found. For tyethiese are illustrated together in
Figure 13.

21



\
Region A

/k,
/
/

Note 3 points which are very
close to one another.

Region B

Figure 11. New surface discretization points.
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Figure 12. New surface discretization after point consolidation.
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Figure 13. Calculation of surface velocities, point velocities, and
maximum time step (time step 2).

Substep 15 (Figure 14) All surface points are once again moved in a Lagrangian deshi
to new locations based on the time step and their respeaieeities. Because element-to-point
connectivity is maintained, a new surface location is aot#dias denoted by blue line segments.
Also, any neighboring points that are wittérof each other are consolidated.

Substep 16 (Figure 15) Every cell in the background mesh through which the surfame n
passes is identified and placed in a sequential list. If tinkasa passes through a cell more than
once, as occurs twice in Figure 16, the cell information aed, and the cell is marked as a 2-
surface cell. Its information is now found twice in the seafisd list. If the surface passes into a
cell more then twice, the cloned cell is simply created ealglitional time. Each cloned cell is
treated as unique for the purposes of the next substep irgbathm.

Substep 17 (Figure 16) In each surface-containing cell, we once again conceptdaiiw

a line from each corner mesh point to the nearest locatiomestrface within the cell. Cloned
cells are treated as distinct in this step, and the porticgh@&urface that is associated with each
cloned cell is not seen by its other copies. As before, cquogtts shared by neighboring cells are
treated as distinct so that multiple lines might be drawmfisingle mesh point. However, each
of these lines is associated with a different surface-comg cell.

Substeps 18 and 19 (Figure 17) Substep 18 consists of consolidating any surface points tha
are withine of each other. The new discrete representation of the sursahown in red. Because
cloned cells are present, we must now check for overlap dases. In substep 19 we check to
see if any line segments from surfaces in clones cells ttesach other. In this case no overlap
exists.
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Figure 14. Lagrangian movement of points (time step 2).
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Figure 15. Identification of surface-containing mesh cells and
the need for cell cloning.
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Figure 16. New surface-discretization points.
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Figure 17. New surface discretization after point consolidation.
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Figure 18. Calculation of surface velocities, point velocities, and
maximum time step (time step 3).

The second time step in the time integration phase of owstititive calculation is now com-
plete.

3.24 |lllustrativetime step three

Substeps 20-22 (Figure 18) The next three substeps include calculating surface elemen
velocities based on the problem physics (not shown heregur€il8 because of the small element
sizes), converting the surface element velocities to edgmt surface point velocities, and the
determination of a maximum time step for surface advanceéivesed on the shortest distance to
any intersection point that may have been found.

Substep 23 (Figure 19) All surface points are once again moved in a Lagrangian dashi
to new locations based on the time step and their respeaieeities. Because element-to-point
connectivity is maintained, a new surface location is ot#dias denoted by blue line segments.
Also, any neighboring points that are wittérof each other are consolidated.

Substep 24 (Figure 20) Every cell in the background mesh through which the surfame n
passes is identified and placed in a sequential list. If thiase passes through a cell more than
once the cell information is cloned, the cell is tagged, dadnformation is now found multiple
times in the sequential list. As explained before, eachetdocell is treated as unique for the
purposes of the next substep in the algorithm.
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Figure 19. Lagrangian movement of points (time step 3).
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Figure 20. Identification of surface-containing mesh cells and
the need for cell cloning.
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Figure 21. New surface-discretization points.

Substep 25 (Figure 21) New surface discretization points are found by conceptulwing

a line from each corner mesh point to the nearest locatiorherstirface within each surface
containing cell. Cloned cells are treated as distinct ia #tep, and the portion of the surface that
is associated with each cloned cell is not seen by its othgieso The distinction between the old
Lagrangian particle points (to be discarded) and the nearetigation points is particularly clear
in Figure 21.

Substep 26 and 27 (Figure 22) Substep 26 consists of consolidating any surface points tha
are withine of each other. The new discrete representation of the suigashown in red. Because
cloned cells are present, we must now check for overlap dases. In substep 27 we check to
see if any line segments from surfaces in clones cells itersach other. In this case two such
intersection points are found, indicating that surfacelagenow exists.

Substep 28 (Figure 23) All surface elements contained in the overlap loop are readov

through a 2D Boolean operation. The operation consists sif dneating two closed loops, one

from each cloned cell, that are formed by the surface linensegs and the cell boundary. When

they are overlaid on top of each other the two loops intelisegppace and three new loops can be
formed. The center loop corresponds to the overlap regimhfram a computational standpoint,

can now be discarded. The interior elements of the remaimmngdoops define the two new sets

of surface elements that are needed. In the calculatiofsrpexd here, these simple 2D boolean
operations are performed by calling appropriate subrestin the 2D boolean library described in

[4]. Note that because the number of surface elements ig/alwery small, these operations are
computationally very fast.

This substep marks the completion of the third time step entittne integration phase of our
illustrative calculation. Figure 24 provides a comparisirour discrete representation of the
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Figure 22. Consolidation of discretization points and identifica-
tion of overlap intersection points.
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Figure 23. Removal of overlap surface elements to create final
surface discretization.
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Figure 24. The discrete surface representation at the end of time
step 3 compared to the original surface.
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surface at this point with the original surface shown in Feg2.
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3.3 Example calculations with the GPP method

The GPP method was coded and implemented as an option in C8IfH, a Sandia code for
modeling the evolving surface topology during MEMS fabtioa. ChISELS was originally writ-
ten to use the LS method, so adding the GPP method facilitategbaring its performance in a
very direct way with that of the GPP model.

3.3.1 Uniform deposition on and in a 2D notch

The initially specified surface is a simple 2D notch (or ti@nas illustrated by the black surface
seen in Figure 25. An idealized surface deposition prodessyields extremely uniform surface
growth rates is specified. Calculations are run using batetel set method and the GPP method,
with varying degrees of mesh resolution. Figure 25 showgtkdicted state of the surface after
deposition has continued for a suficient time to build up dyfaignificant growth layer.

PR \ :r"
LS Method / / GPP Method

16x16 Grid 10x10 Grid
32x32 Grid 20x20 Grid
64x64 Grid

128x128 Grid

Figure 25. The effect of grid resolution in test problem 1.

Surface contours obtained using the LS method with varyemgyees of mesh refinement are
shown on the left side of the figure. As the numerical meshfieed, the error introduced near
corners is reduced. But only the calculation with the finessimrefinement (corresponding to an
equivalent uniform mesh of 128x128) appears to be nearingsbhrnonverged solution.

Surface contours obtained using the GPP method are showreaight side of this figure. In
the GPP case only two levels of mesh refinement are showmrspmnding to a 10x10 and a 20x20
uniform background mesh. Here we can observe that the splistvery nearly a mesh-converged
solution with the 20x20 grid, as the only differences betw#ee two runs occurs in the region
around the upper corner of the notch, and these differemeegeay small.

This test calculation demonstrates the ability of the GPEhoteto more accurately represent
the deposition process near sharp corner regions. Thisngply due to the ability of the GPP
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method to pick out the points on the surface where large sairdarvature is present, and place
surface elements in these regions in such a way that thetavevia captured in a fairly optimal
way. Thus for the same level of accuracy, many fewer surfezaents are required with the GPP
method than with the LS method.

3.3.2 Uniform deposition in a complex 2D geometry

In this second test problem the initially specified surfaca more complex 2D geometry. Once
again, an idealized surface deposition process that yetttemely uniform surface growth rates
is specified and calculations are run using both the levehsthod and the GPP method. In this
case, the LS method was run with a mesh resolution equivedeat32x32 background mesh.
(Adaptive mesh refinement of the LS grid enables the codeftoeréo this level only near the

surface itself.) The GPP method was run using a somewhas@&oa8x28 grid so that the total
number of surface-elements, about 90, would be essentialgame for both methods.

GPP - LS

Figure 26. GPP and LS discretized surfaces after reconstruction
of the initial surface in test problem 2.

Figure 26 shows the respective background meshes andtilaésaorface representation for this
problem using both methods — the GPP method on the left, andShmethod on the right. Here
we can see that in reconstructing the initial idealizedasgf the GPP method captures the sharp
corners exactly, while the LS method effectively roundsdbmers at a scale proportional to the
mesh size.

The next five figures show the background mesh and the stdte ef/blving surface using both
methods at five subsequent points in time in the calculation.

In Figure 27 we see the surface at step 25. The major diffeseseen here are the radius of
curvature at corners.
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GPP LS

Figure 27. GPP and LS discretized surfaces after step 25 in test
problem 2.

Figures 28 and 29 correspond to time steps 30 and 35. Of nodadhthat portions of the left
and right vertical sides are approaching each other. In tAB @ethod, the right vertical side
remains vertical. In the LS method an artificial bulging o tight side-wall is observed as the
spacing between the left and right sidewalls becomes lessttie mesh spacing. This happens
because the surface reconstruction method, which reliesterpolation from a signed-distance
function known at discrete points, cannot accurately rettact the separation distance between
the two approaching walls when the distance between themoagpipes the mesh size. As can be
seen, the GPP method does not suffer from this problem.

Figures 30 and 31 correspond to time step 40 and 45 in thelaatou Here the surface
geometry has pinched off, and a small void region is leftatad while the upper surface continues
to move with the deposition. Note that both the timeing of wtiee pinch-off occurs, as well as the
shape of the resulting voided region are very different beeaf the numerical error introduced
by the LS method.

This test problem and the figures illustrating the resultmalestrate that, for the same num-
ber of surface-elements, the GPP method provides a moresaecepresentation of the temporal
surface evolution process than the LS method. One reasdhifois that the GPP method auto-
matically concentrates surface elements in regions wlage Isurface curvature (relative to the
grid) ) is present. Another important factor is the surfaamnstruction method. In LS, the surface
must be found by interpolation from the local mesh point galof the signed distance function.
This introduces a numerical smearing of order the mesh stmnvsurface regions merge. In
GPP, the surface is reconstructed directly from curreriasarelement location information, using
background mesh points only as geometric reference points.
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Figure 28. GPP and LS discretized surfaces after step 30 in test

problem 2.

GPP

Figure 29. GPP and LS discretized surfaces after step 35 in test

problem 2.
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Figure 30. GPP and LS discretized surfaces after step 40 in test

problem 2.

GPP -

Figure 31. GPP and LS discretized surfaces after step 45 in test

problem 2.
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3.4 Extending the GPP method to 3D

In this report the GPP method has been formulated in 2D. $ssue ideas for extending the method
for use in 3D are discussed here.

A 3D GPP method would consist of basically the same sequdmmamoeptual substeps as those
for 2D problems. However, certain important differenceshia geometric nature of the problem
must be addressed in 3D. The first difference concerns thaDetization process.

In 2D, the surface discretization step identifies (A) theaddébur surface points in each 2D cell
that are closest to the four cell corners, and (B) all inteiea points between the surface and the
2D cell side faces. These points are often the same, thusuthber of unique points may be as
few as two.

In 3D, the surface discretization must also have two parngalt A, we must compute a set
of eight points in each 3D cell that are closest to the eightcoeners. In part B, the intersection
of the surface which each face of the 3D mesh must be identifire@D, the intersection is only
a point, but in 3D this intersection is a 2D curve. Thus forteface intersected by the surface, a
2D surface discretization must also be performed to prgphsicretize the side-face intersection
curve. Given the collection of points so identified, nongua points are discarded, leaving the
remainder as the basis for defining the discrete represamtaitthe surface within the 3D cell.

The second important difference is faced at the end of theretigation process. In 2D, the
discretization points are easily connected into a seqaleseit of up to 3 line segments. In 3D,
a more complex algorithm must be used to assemble the potaisicontiguous set of surface
triangles. The well known Delaunay triangulation methodnsobvious candidate for this, as it is
robust and well understood. However, it should be notedvihan the process is complete for all
cells, the collection of surface-containing cells cann®stored as a simple 1D list of sequential
cells. Instead, the cell information must be stored in artruotured data format that contains
surface connectivity information — such as is maintainedifote elements analysis.

In section 3.2.2 above, the calculation of point velocit@ghe 2D algorithm was described. In
2D only two surface elements can share a given point, but imaDy surface elements can share
the same point. For 3D, Equation (9) must therefore be gépedato account for contributions
from each surface element sharing a given point.

In 2D, neighbor point entanglement is easily prevented tmtilng the time-step as described
in section 3.2.2. This is straightforward because the vglo@ctors all exist in the same 2D
geometric plane. However, this is not true 3D and therefloiegame method cannot be used to
limit the time-step in 3D. An appropriate explicit solutibmthis issue in 3D has not been worked
out by the authors. Without an explicit formula, the timepstéeould need to be estimated, and the
resulting surfaces checked for entanglement after the liaehtanglement was detected, the time
step would have to be reduced and the advection substegedpea

When a given cell is intersected more than once by a giveaseythe process of determining
if the different surface parts intersect changes from beimg of checking for the intersection of
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line segments in 2D, to the process of checking for the ieteisgn of triangular surface elements
in 3D.

When 3D cloned cells exist and a surface intersection israhéned, the resulting boolean
operation that must be performed to change the topologgas2i in nature. These 3D operations
are more expensive than their 2D analogs. However, bechasautber of surface elements is
bounded by a fairly small number, the cost should still baoeable.

Although the additional complications just noted are nawigl, the numerical operations re-
quired are all commonly performed in other contexts, and-¢neaining challenges noted do not
appear insurmountable. The motivation for pursueing thf@ach in 3D is that the key advan-
tages evident in 2D would be expected to also extend intoEhee8Im. In particular, the number
of surfaces required to model the evolution of a surface withrp corners and edges would be
significantly reduced because the method automaticallg findse regions of high curvature and
places marker points on them. The most important questidire tanswered is whether the addi-
tional complexities mentioned could be addressed in a cet@lylrobust way, so as to handle all
cases in all situations without running into numerical gtmns that would cause the application

code to fail.
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