
SANDIA REPORT
SAND2000-8219
Unlimited Release
Printed Februaw 2000

olerance for

P. D.

istributed Computina

1. t Ih, M. E. Goldsby, and E. J. Walsh

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livemlore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation.
a Lockheed Martin Company. for the Uniied States Department of

‘gy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National laboratories

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandm Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
OI process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, OI any of their
contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best avaliable copy.

Available to DOE and DOE contractors from
Office of Scientfic and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http:llwww.ntis.govlordering.htm

Available to the public from
National Technlcal Information Seroxe
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: -401

3

SAND2000-8219
Unlimited Release

Printed February 2000

Algorithm-dependent Fault Tolerance
for Distributed Computing

P. D. Hough
Computational Sciences and Mathematics Research Department

M. E. Goldsby
Systems Studies Department

E. J. Walsh
Distributed Systems Research Department

Sandia National Laboratories
Livermore, CA

Abstract: Large-scale distributed systems assembled from commodity parts,
like CPlant, have become common tools in the distributed computing world.
Because of their size and diversity of parts, these systems are prone to failures.
Applications that are being run on these systems have not been equipped to
efficiently deal with failures, nor is there vendor support for fault tolerance. Thus,
when a failure occurs, the application crashes. While most programmers make
use of checkpoints to allow for restarting of their applications, this is cumbersome
and incurs substantial overhead. In many cases, there are more efficient and
more elegant ways in which to address failures.

The goal of this project is to develop a software architecture for the detection of
and recovery from faults in a cluster computing environment. The detection
phase relies on the latest techniques developed in the fault tolerance community.
Recovery is being addressed in an application-dependent manner, thus allowing
the programmer to take advantage of algorithmic characteristics to reduce the
overhead of fault tolerance. This architecture will allow large-scale applications
to be more robust in high-performance computing environments that are
comprised of clusters of commodity computers such as CPlant and SMP
clusters.

4

1 Introduction

As the size and complexity of current and next generation computers continue to
increase, the issue of fault tolerance has become a significant concern in the
development of distributed computer systems and applications. Even though
fault tolerance on homogeneous systems is a well-studied problem, the issues
arising on very large heterogeneous platforms, like Sandia’s “Computational
Plant” (CPlant), are still largely unexplored. Fault tolerance is a more difficult
problem for heterogeneous systems because of their decentralized processor
and storage architectures, diverse processor technology (and thus strong
nonuniformity in processing powers and computational loads), diverse network
topologies, and different operation systems. Moreover, such systems are
unlikely to have much support for fault tolerance from manufacturers. Thus, it is
left to the developers to address these issues.

As a motivational example, we consider a materials characterization problem.
The solution of this problem entails using an iterative optimization algorithm that
executes a shock physics simulation at least once each iteration. For a small
problem, this simulation takes thirty minutes. Combining this with the expected
behavior of the optimization algorithm, we can estimate that solving this problem
will require several days of computation time. Figure 1 shows the number of
available nodes on CPlant over a two-week period. Notice that on the second
day (i.e. 13 days ago), sixteen nodes become unavailable. By the third day, they
are once again available, but on the fourth day, eighteen others have failed. If
our application is running when these failures occur, we want to be assured that
our application will complete. This it the reason why it is essential that fault
tolerance capabilities are available.

100

105

110

115

120

125

130

14 13 12 11 10 9 8 7 6 5 4 3 2 1

of days ago

of

 a
va

ila
bl

e
pr

oc
es

so
rs

Maximum # of
Processors
Actual # of
Processors
Figure 1: This figure shows
the number of processors
available on CPlant over a
two-week period, starting
fourteen days ago.

5

The criteria for good fault tolerance strategies are effectiveness (good coverage
for common failure scenarios) and efficiency (low computational overhead).
Some of this can be accomplished in the physical design of the distributed
system. For example, disks may be hot swappable, and network routing may be
redundant. However, to be fully effective and efficient, fault tolerance must
include software that will aid in the detection of and recovery from failures. It is
on the development of such software tools that we focus.

Fault tolerance can be broken down into three main layers, as illustrated in
Figure 2. The bottom layer consists of a detection system. This layer is
responsible for monitoring the state of the distributed system, determining when
a failure occurs, and notifying the application. The top layer is the application
code. This is usually a large-scale distributed simulation that may run for days.
In the event of a failure, the ideal scenario is for it to recover in an intelligent and
efficient manner. The middle layer is the communication layer. This is the
means by which the detection system communicates with the application, and in
some cases, the means by which the application communicates with itself. While
all three of these layers are required for effective fault tolerance, our work
focuses on the detection layer, described in the next section, and the application
layer, described in the third section. The final section of this report contains a
discussion of ideas for future extensions of this work.

2 Fault Detection

There are many types of failures that can occur in a complex dis
For example a node can fail, a network connection could fail, or
Furthermore, these failures my occur one at a time, or several m
once. In this work, we focus on detecting individual node failure
failures insofar as they appear to be node failures. To this end,
that there are two primary classes of fault detection protocols in

Application (MPI, PVM, Java)

Communication Layer

Detection System
Figure 2: This figure
shows the three
layers of software
required for fault
tolerance.
tributed system.
 a disk could fail.
ay happen at
s and network
we have found
 the literature.

6

The first is based on group membership [Birman, 1993]. This is a situation in
which each node in a distributed system monitors the state of every other node in
the group by direct communication with it. This is an effective method of fault
detection on small systems, but since it requires all-to-all communication,
network congestion becomes a significant bottleneck as the system becomes
larger. An alternative to group membership protocols are gossip-based fault
detection protocols [van Renesse, et al, 1998]. In this setting, each node
communicates with a subset of the other nodes in the system. Its view of the
system is determined by a combination of its own information and that received
from these other nodes. This requires only selected point-to-point
communication. In addition, it is easy to design a hierarchical structure for the
gossip-based protocol. For these reasons, a gossip protocol is more scalable
than a group membership approach and thus, more appropriate for fault
tolerance on a large system. Descriptions of two new variations of gossip
protocols follow.

2.1 Ring implementation

One approach to implementing a gossip-based detection algorithm is to embed it
in a ring protocol. In this scenario, we imagine that the nodes are arranged in a
ring. Each node has a left and a right neighbor with whom it communicates
about the state of the distributed system. The message traffic flows from left to
right, as depicted in Figure 3. There are three basic messages used in the ring.
The purpose of each message, as well as its associated procedures, are
described below.

Heartbeat: Each node is responsible for monitoring the state of its right
neighbor. In order to accomplish this, it periodically sends a heartbeat message
to the right. If the heartbeat is acknowledged, then the right neighbor is still
functioning. If not the right neighbor is faulty.

Failure: If a node has determined that its right neighbor has failed, it has several
responsibilities. The node first breaks its connection with the faulty neighbor, and
then it establishes a new connection with the next non-faulty node to the right.
This process is illustrated in Figure 4. The node then generates and sends a
failure message around the ring. As each node in the ring receives the message,
it marks the faulty node and passes the message to the right.

Figure 3: This figure shows a
ring of system nodes. The
arrows represent the flow of
message traffic, directed from
left to right.

7

Recovery: It is often the case that a faulty node becomes functional again. In
this setting, one would like to reincorporate it into the ring. Thus, we have
included this capability in our detection system. If a node is marked as faulty,
then its left neighbor tries to establish contact with it. If the connection is
successful, the recovered node is brought back into the ring by the following
process, illustrated in Figure 5. First, the left neighbor breaks its network
connection with its current right neighbor. Next, it connects to the recovered
node. Finally, the recovered node makes a network connection to its right
neighbor. When this process is complete, the left neighbor composes and sends
a recovery message around the ring. As each node receives the message, it
marks the recovered node as being back in the ring and passes the message to
the right.

There are many intricacies involved in tying these messages and procedures
together into a full-scale fault detection protocol, but they can be boiled down to
three primary threads of logic. These threads and their interactions are
summarized in Figure 6. More details are available on request.

2.2 An implementation based on randomness

Another approach to implementing gossip-based detection protocols involves a
random communication pattern. In other words, a node does not communicate
with a fixed set of nodes as in the ring protocol. Instead, a node randomly
chooses another node in the system with whom to communicate. It sends its
information on the state of the system, and the receiving node merges the
incoming information with its own in order to obtain an updated state. This also
differs from the ring protocol in that the message contains the state of the entire

Figure 4: This figure shows the procedure for
when a node fails. When node x fails, then
node w sends the message “node x failed” to
node y, which passes the message to node z,
which passes it to node s, etc. The message
travels to every node in the ring.

Node w breaks its
connection with
node y.

Node w connects
to node x

Node x connects to
node y

Figure 5: This
figure shows the
recovery process.

Fi
gu

re
 6

:
Th

is
 fi

gu
re

 is
 a

di
ag

ra
m

 o
f t

he
 o

ve
ra

ll
rin

g-
ba

se
d

go
ss

ip
 fa

ul
t d

et
ec

tio
n

8

al
go

rit
hm

.

9

system rather than information only about particular nodes. Our collaborators in
the High-performance Computing and Simulation (HCS) Laboratory at the
University of Florida have implemented such a protocol and have conducted
thorough simulative studies.

In addition to developing the basic protocol described above, the researchers in
the HCS Lab have developed a number of improvements and enhancements.
Improvements include building a hierarchy into the fault detection protocol and
piggybacking protocol messages on the message traffic of the application.
Studies indicate that these techniques improve the scalability of the basic gossip
protocol. The most notable enhancement is a scalable consensus algorithm.
This allows the nodes in the distributed system to agree on the state of the entire
system so that appropriate recovery action can be taken.

For a detailed account of the work done at the HCS Laboratory, see [Burns, et al,
1999; Ranganathan, et al, 1999].

3 Algorithm-dependent Fault Recovery

There are two fundamentally different methodologies for fault recovery. The
traditional approach is to make fault tolerance as transparent to the user as
possible by using techniques such as checkpointing the entire state of the
application or replicating processes. The advantages to this approach are that it
requires very little work on the part of the application developers, and it is usually
easy to incorporate. This type of fault tolerance has worked well in loosely
coupled distributed applications with little or no interdependence between
processes. The nature of scientific applications is somewhat different. In a
typical application, each process requires information from other processes in
order to proceed. Thus, the success of the application depends on all of the
processes running to completion. While checkpointing and replication are
adequate means of ensuring completion, they place limitations on the throughput
and the availability of the distributed system. Furthermore, checkpointing can
incur a substantial overhead, and the checkpoints are often usable only on
processors with the same architecture and operating system as the processor
where they were taken. These limitations are unacceptable to the developers of
scientific applications, and therefore, a different approach is required.

A more efficient approach to fault recovery is application dependent. This
involves exploiting the characteristics of an application in order to implement fault
recovery in an efficient manner. While this is more intrusive to the application, it
can allow for substantial computational savings. Replication can be eliminated,
and the architecture-dependence of checkpointing can be avoided. Since each
application is different, it is not a trivial task to develop one set of generic tools for
this type of fault tolerance. However, it is possible to provide examples for
various classes of applications. We have implemented fault tolerance in two very
different applications. These are described below.

10

3.1 Asynchronous Parallel Direct Search (APDS) Optimization

One type of optimization method that is popular for use with engineering
problems is known as Parallel Direct Search (PDS) [Dennis and Torczon, 1991].
This is an inherently parallel optimization method that has demonstrated
robustness in typical engineering settings. PDS has a couple of features that
lend it to fault tolerance. The first is the inherent parallelism. This results in
loose coupling between processes, which makes implementing fault tolerance
easier to implement. The second is the fact that PDS can lose some information
and still be guaranteed to find a solution. This means that there may be no
overhead associated with some failures. There is one drawback to PDS,
however. It is an iterative algorithm with a synchronization point at each iteration.
This not only makes implementing fault tolerance difficult, but it is also generally
undesirable in a heterogeneous computing environment.

To eliminate the synchronization problem, we implement PDS in an
asynchronous manner. Not only is this more suitable for the heterogeneous
environment, but it allows the flexibility necessary to incorporate fault tolerance.
In fact, a high degree of fault tolerance comes at a very low cost. The
asynchronous PDS is implemented in a peer-to-peer fashion, so there is no
single point of failure in the algorithm. If a node fails, it is either ignored or the
process is restarted on another node with only a small packet of information
received from another process. The result is an algorithm whose fault tolerance
is limited only by the communication architecture underlying it and that requires
no checkpointing whatsoever, resulting in extremely low overhead for fault
recovery. Numerical experiments run on CPlant have shown that, unlike the
original PDS, this asynchronous implementation runs to completion in the
presence of failures, and it requires less time than the original version. For more
details, see [Hough, et al, 2000].

3.2 Infrastructure for Distributed Enterprise Simulation (IDES)

Another class of applications is represented by the Infrastructure for Distributed
Enterprise Simulation (IDES) [Johnson, et al, 1998]. This is a distributed
simulation framework that is capable of handling massive enterprise simulations
with large numbers of simulation entities. One example of its use is in simulating
the nuclear weapons complex. Unlike PDS, IDES must recover any information
that it loses; however, it has two features that are conducive to fault tolerance. It
periodically comes to a synchronized state in which there is no communication in
progress, which provides a natural opportunity for checkpointing; and it is written
in Java, so Java serialization can be used to checkpoint and recover the program
state. Another feature is that it can accept communication from external
programs. This is used to resolve differences between real time and virtual time,
but it can also be used to allow IDES to communicate with the fault detection
services.

11

We have implemented a fault-tolerant version of IDES. As part of this work, we
developed a more general tool that can be used to capture periodic checkpoints
of an application and recover from a failure by restoring the checkpoints. The
current version of the tool makes use of the application's ability to bring its
communication to quiescence. Details on the fault-tolerant version of IDES will
appear in a forthcoming technical report.

4 Conclusions

As the trend toward heterogeneous distributed computing platforms, like CPlant,
continues, fault tolerance will continue to be an important issue that should not
be ignored. Though we have developed a number of successful tools and
strategies, there are still many challenges to be addressed. A brief summary of
questions we plan to address follows.

1. We can currently detect node failures; however, when a symmetric multi-
processor machine is included in the distributed system, this provides
insufficient coverage of application failures. Therefore, we will be extending
our fault detection protocols to include the case when SMP machines are
included in the distributed system.

2. A failure may occur when an application is doing file I/O. We will investigate
the inclusion of file I/O in the recovery scheme.

3. The ring-based gossip protocol as it is currently design is not scalable. In
order to correct this problem, we will embed in a hierarchy of rings, drawing
on experience from the Totem project [Moser, et al, 1996].

4. There are many distributed applications at Sandia that are concerned about
fault tolerance. We will consider fault tolerance issues arising in some of
these applications, such as the Lilith and the Simulation Intranet projects.

5. In order to be a complete fault-tolerant system, a communication substrate
must be included between the detection and application layers. We will
investigate various communication architectures and incorporate that which is
most appropriate.

6. Multi-agent systems can significantly improve the performance of applications
for which they are appropriate. Fault tolerance is a potential candidate for a
multi-agent solution, so we will be evaluating the appropriateness of such a
solution.

12

5 References

K. P. Birman, “The Process Group Approach to Reliable Distributed Computing”,
Communications of the ACM, Volume 36, Number 12, pp. 37-53, December
1993.

J. E. Dennis, Jr. and V. Torczon, “Direct Search Methods on Parallel Machines”,
SIAM Journal on Optimization, Volume 1, Number 4, pp. 448-474, 1991.

P. D. Hough, T. G. Kolda, and V. J. Torczon, “Asynchronous Parallel Pattern
Search for Nonlinear Optimization”, Technical Report SAND2000-8213, Sandia
National Laboratories, Livermore, California, January 2000. (Submitted to SIAM
Journal on Scientific Computing.)

M. M. Johnson, A. S. Yoshimura, M. E. Goldsby, C. L. Janssen, and D. M.
Nichol, “Infrastructure for Distributed Enterprise Simulation”, Technical Report
SAND98-8224, Sandia National Laboratories, Livermore, California, January
1998.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos, “Totem: A Fault-Tolerant Multicast Group Communication
System”, Communications of the ACM, Volume 39, Number 4, April 1996.

M. W. Burns, A. D. George, B. A. Wallace, “Simulative Performance Analysis of
Gossip Failure Detection for Scalable Distributed Systems”, Cluster Computing,
Volume 2, Number 3, pp. 207-217, 1999.

S. Ranganathan, A. D. George, R. W. Todd, and M. C. Chidester, “Gossip-Style
Failure Detection and Distributed Consensus for Scalable Heterogeneous
Clusters”, submitted to Cluster Computing, 1999.

R. van Renesse, Y. Minsky, M. Hayden, “A Gossip-Style Failure Detection
Service”, In Proceedings of Middleware ’98, 1998.

	Abstract
	1. Introduction
	2 Fault Detection
	2.1 Ring implementation
	2.2 An implementation based on randomness

	3 Algorithm-dependent Fault Recovery
	3.1 Asynchronous Parallel Direct Search (APDS) Optimization
	3.2 Infrastructure for Distributed Enterprise Simulation (IDES)

	4 Conclusions
	5 References

