
Genetic 



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 

NOTICE: This report was prepared as  an account of work sponsored by an 
agency of the United States Government. Neither the United States Government, 
nor any agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, make any warranty, express or implied, or 
assume any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply 
its endorsement, recommendation, or favoring by the United States Government, 
any agency thereof, or any of their contractors or subcontractors. The views and 
opinions expressed herein do not necessarily state or reflect those of the United 
States Government, any agency thereof, or any of their contractors. 

Printed in the United States of America. This report has been reproduced directly 
from the best available copy. 

Available to DOE and DOE contractors from 
U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 3783 1 

Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov 
Online ordering: http://www.doe.gov/bridge 

Available to the public from 
U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA 22 161 

Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order: http: / / www.ntis.gov/ordering. htm 



SAND2000-2846
Unlimited Release

Printed November 2000

Development and Application of Genetic Algorithms
For Sandia’s RATLER Robotic Vehicles

Daniel W. Barnette
Parallel Computational Sciences Department

Richard J. Pryor
Evolutionary Computing Methods

John T. Feddema
Intelligent Systems Sensors & Controls

Sandia National Laboratories
PO Box 5800

Albuquerque, New Mexico 87185-0316

ABSTRACT

This report describes the development and application of genetic algorithms for the
purpose of directing robotic vehicles to various signal sources. The use of such vehicles
for surveillance and detection operations has become increasingly important in defense
and humanitarian applications. The computationally parallel programming model as
implemented on Sandia’s parallel compute cluster Siberia and used to develop the genetic
algorithm is discussed in detail. The model generates a computer program that, when
loaded into a robotic vehicle’s on-board computer, is designed to guide the robot to
successfully accomplish its task. A significant finding is that a genetic algorithm derived
for a simple, steady state signal source is robust enough to be applied to much more
complex, time-varying signals. Also, algorithms for significantly noisy signals were
found to be difficult to generate and should be the focus of future research. The
methodology may be used for a genetic programming model to develop tracking
behaviors for autonomous, micro-scale robotic vehicles.



2

Acknowledgments

The authors wish to acknowledge the following:

Funding for this project was obtained through Sandia’s Laboratory Directed Research
and Development (LDRD) office (Project 10690, Task 03).

Johnny Hurtado, Department 15211, supplied the mathematical models for the signal
sources.

Wolfram Research’s Mathematica 4.0 was used to generate signal source and simulated
robot path illustrations.



3

Contents

Acknowledgments 2

Introduction 4

The Genetic Algorithm 5

Program Representation of the Genetic Algorithm 7

Problem Setup 8

Signal Source Models 9

Results 9
A. Simulation: Genetic Algorithm for Non-Noisy Signal Sources 9
B. Field Test:  Coupling the Genetic Algorithm with Sandia’s RATLERs 10
C. Simulation: Non-Noisy Genetic Algorithm Applied to Noisy Signals 12
D. Simulation: Genetic Algorithm for Noisy Signal Sources 12

Summary and Conclusions 13

References 13

Tables
1. Functions and Terminals Available for Genetic Algorithm Decision Tree 6
2. Equations for Signal Source Models 9
3. Configuration of Sandia’s Parallel Compute Clusters 10

Figures
1. Example of a 5-node, 3-level decision tree representing y=2.3 + 5.9x.
2. Select, top-view convergence sequences of a representative genetic algorithm.
3. Sandia’s parallel compute cluster, ALASKA/SIBERIA.
4. Various source signal models used.
5. Peak movement for the various signal source models.
6. Simulated vehicle movement for the signal source models.
7. Image of a typical RATLER vehicle.
8. Model 0 source illustrating algorithmic convergence for 5% signal noise and non-

convergence for 8% signal noise.

Appendices
A – CEDAR Pseudo-Code Program Listing
B – ROBOCOP.C Program Listing
C – ROBOCOP.C Sample Output Listing for Model 0
D – Mathematica 4.0 Graphics Program Listing

Distribution



4

Development and Application of Genetic Algorithms
For Sandia’s RATLER Robotic Vehicles

Introduction

The emerging technical approach to deal with a challenging, possibly hostile,
environment is likely to involve a large number of small, but fairly intelligent, robots. It
is envisioned that these can covertly infiltrate a designated area, enter buildings, gather
appropriate information, and communicate with and learn from each other. They would
also communicate with a smaller number of on-the-scene soldiers backed up by powerful
off-line computers that can carry out large-scale information collection, analyses, and
simulations. Each robot would have on-board electronics, ground-positioning and
communication equipment, an obstacle detector, and some source-analysis capability.
Each robot would also have a motor, wheels, and a motor control system. Although the
deployed robots would behave autonomously, each robot would communicate
information with other robots during the task.

This report documents the effort to generate and apply a robust genetic algorithm to act
as a vehicle controlling program for robotic behavior. In a typical scenario, robots are
initially distributed randomly in a field and given the goal of locating the emitting source,
be it sound or smell. An onboard processor running the algorithm provides instructions to
the motor control system that directs the robot to the source location while navigating
around obstacles.

The controlling algorithm is generated by a computer code designed to assemble, test,
and compare many similar algorithms simultaneously. The code uses trial and error,
tournament play, and best fits to generate a decision tree appropriate for the task. Once
chosen, the decision tree then becomes the controlling algorithm of choice. The algorithm
in decision-tree form is then translated into high-level computer language such as
FORTRAN or C, compiled, and downloaded to the robotic vehicles deployed in the task.
The robotic vehicles are then controlled by execution of the code using onboard
processors, sensors, and memory.

The Sandia RATLER robotic vehicle serves as a research platform for the current effort.
Although the RATLER’s size precludes its large-scale use at present, further research
will see the capabilities of RATLER reduced to micro-scale vehicles. Operationally, it is
envisioned that tens to hundreds of these small robots would be deployed to complete a
given task.



5

The Genetic Algorithm

Building a genetic algorithm is a compute-intensive process by virtue of the fact that it
continually attempts to create successive generations of more fit algorithms.
Improvement occurs in discrete steps called generations. A generation is composed of a
population of individual algorithms each of which is a complete computer program. The
number of algorithms considered at one time varies based on the problem; however,
hundreds, if not thousands, of genetic algorithms can be considered simultaneously by
judicious use of parallel computers. Typically, some algorithms will be more effective
than others at doing the prescribed task. Each algorithm is scored for applicability, and its
fitness is given a numerical score such that the higher the fitness, the better the algorithm.
The goal is to generate an algorithm that correctly solves the problem of interest.
However, there is no guarantee that the chosen algorithm is necessarily the best – usually,
it suffices.

To create subsequent generations, genetic operators of selection, reproduction, crossover,
and mutation are used. The purpose of selection is to choose an algorithm from the
current population. In general, this algorithm will be better than most, but it may not be
the very best. Reproduction moves a selected algorithm directly into the next generation.
Crossover uses the selection operator twice to select two algorithms from the current
population that will be combined in some way to form a hybrid algorithm that will be
placed in the next generation. Mutation uses the selection operator once to choose an
algorithm that will be changed in some way and placed in the next generation. The four
genetic operators are discussed in more detail by Koza[1] and Pryor[2]. The development
described above proceeds across many generations until a single algorithm is found that
meets a convergence criteria. This algorithm is then tested and, if found to be sufficiently
robust, implemented as the robotic controlling program.

Pryor[2] gives an example of the program representation of a decision tree making up a
genetic algorithm. The basic building block of a tree is called a node, with all nodes in
the tree having the same fixed structure. The first element of a node specifies the node
type, which can either be a function or a terminal. A function node performs a
mathematical or Boolean operation and generally has branches (nonzero pointers) that
point to other nodes. The number of branches depends on the kind of function, e.g., add,
subtract, multiply. A terminal node normally returns a value, does not have any branches
(all pointers are zero), and terminates that section of the tree. Other elements within a
node are a value position and pointers to other nodes. All of the nodes result in a decision
tree that performs a specified task. More detail is given in the next section.

Noise can have a significant impact in actual applications where genetic algorithms are
employed. Unless noise is accounted for during its creation, the genetic algorithm may
not be able to respond in an appropriate manner. Such was the case in the present
applications, as will be shown.

Table 1 lists functions allowed to make up the genetic algorithm.



No.

FUNC
 1 
 2 
 3 
 4 
 5 
 6 

 7 
 8 
 9 
 10 
 11 

 12 

TERM
 13 
 14 
 15 
 16 
 17 
 18 
 19 

 20 

 21 

 22 
 23 

 24 

 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
Table 1: Functions and Terminals Available for Genetic Algorithm Decision Tree

Function Name Mathematical Expression Comments

TIONS:
RETURN Returns a value
ADD + Adds two values
SUBTRACT - Subtracts two values
MULTIPLY * Multiplies two values
IFGTEQ IF (value1 >= value2) Compares two values
COMPUTE ANGLE Determines which direction robot

faces
STORE A-REG Register for each robot
STORE B-REG Register for each robot
STORE C-REG Register for each robot
INTEGER ROUND value=FLOOR(value1+0.5) Round to nearest integer value
STORE AVG X-REG (1 - κ)*(AVG X-REG)

               +  κ*(AVG X-REG)
Exponential moving average for value
stored (κ=0.5)

STORE AVG Y-REG (1 - κ)*(AVG Y-REG)
               +  κ*(AVG Y-REG)

Exponential moving average for value
stored (κ=0.5)

INALS:
NEIGH 1 XPOS First nearest neighbor’s X location
NEIGH 2 XPOS Second nearest neighbor’s X location
NEIGH 1 YPOS First nearest neighbor’s Y location
NEIGH 2 YPOS Second nearest neighbor’s Y location
ROBUG XPOS X location of robot
ROBUG YPOS Y location of robot
ROBUG DIRECTION 1=North, 2=East, 3=South,

4=West
Direction heading of robot (1,2,3, or
4) on grid

NEIGH 1 SIGNAL Signal detected by first nearest
neighbor

NEIGH 2 SIGNAL Signal detected by second nearest
neighbor

ROBUG SIGNAL Signal detected by robot
V-WALL XPOS North-South wall’s X location of

corner
V-WALL YPOS North-South wall’s Y location of

corner
H-WALL XPOS East-West wall’s X location of corner
H-WALL YPOS East-West wall’s Y location of corner
RECALL A-REG Use A-register’s contents
RECALL B-REG Use B-register’s contents
RECALL C-REG Use C-register’s contents
TURN NORTH Directs robot to face North
TURN EAST Directs robot to face East
TURN SOUTH Directs robot to face South
TURN WEST Directs robot to face West
TURN RIGHT Directs robot to turn right
MOVE AHEAD Directs robot to move ahead
VALUE Store a value
6



7

Program Representation of the Genetic Algorithm

This section describes how the genetic algorithm is represented by individual program
elements that make up a decision tree. The representation should always allow complete
flexibility in defining programs, yet it must also ensure that the performance of the
genetic operations is not too cumbersome. A tree-like structure best meets these
requirements.

The basic building block of a tree is called a node, with all nodes in the tree having the
same fixed structure. The first element of a node specifies the node type, which can either
be a function or a terminal. A function node performs a mathematical or Boolean
operation and generally has branches (nonzero pointers) that point to other nodes. The
number of branches depends on the kind of function, e.g., add, subtract, multiply. A
terminal node normally returns a value, does not have any branches (all pointers are
zero), and terminates that section of the tree. Other elements within a node are a value
position and pointers to other nodes.

Consider the sample decision tree shown in Fig. 1. This tree has five nodes and is three
levels deep. The tree is evaluated by starting at its root, or top, and working downward
until a terminal node is reached. A terminal node returns a value that is then processed
upward in the tree.

To evaluate the sample tree, we begin at the first node denoted by Start, a function node,
whose kind is specified as Add. This kind of function node points to two other nodes that
return values to be summed by the Add node. At Pointer 1, there is a terminal node that
returns a constant value of 2.3. At Pointer 2, there is a function node whose kind is
Multiply. This node uses Pointers 3 and 4 to point to two Value nodes: one that returns
the value 5.9, and the other the value of a global variable x. These two values are
processed by the Multiply node, which returns the resultant along with the value of 2.3 to
the Add node above it. The tree is equivalent to the expression

y = 2.3 + 5.9 x

where y is the value returned by the root node at the top of the tree.

Larger trees used in the robotics program have many more function and terminal types
than in the sample tree. The user specifies a maximum allowable number of nodes and
depths in the code that generates the genetic algorithm, but typical values are around 800
nodes with a maximum tree depth of 80 levels.



8

Problem Setup

The computer code CEDAR has been written to assemble and test genetic algorithms
using computer-simulated robots. A listing of pseudo-code for CEDAR is given in
Appendix A. Using CEDAR’s most current genetic algorithm, the computer-simulated
robots solve a set of 90 problems to determine robustness and best fit for search-and-find
behavior. At the start of each problem, the simulated robots are placed in arbitrary
positions onto a two-dimensional grid and are tasked with finding an arbitrarily placed
target. The option exists to arbitrarily place two walls onto the same grid to have the
robots learn to avoid obstacles. The walls, if simulated, follow the grid lines in either the
x or y directions. The goal for the simulated robots is to learn to navigate to the target and
to avoid walls if present. The robots have no foreknowledge of either their own positions
or the positions of the walls and the target.

Fig. 2 illustrates a representative configuration at startup. Select sequences of graphs
show how the simulated robots converge on the two targets. Two signal sources, or
targets, are shown in blue. Each signal represents a 1/r2 source whose strength is
indicated by gray contours. Red circles randomly spaced about the blue targets represent
the robots. In this application, walls were included in the simulation and are shown by
heavy, intersecting lines. The position of each robot is given by a coordinate pair (x,y)
which are positive integers. A robot’s orientation can be in one of four directions, N, S,
E, or W, where north is towards the top of the page. The direction impacts the robot’s
sensing ability: a robot is programmed to only sense an obstruction if it is positioned in
the direction the robot is facing. As shown in the sequence, the simulated robots
successfully avoid the walls and converge on the targets, i.e., the signal peaks.

Certain assumptions related to actual robots are inherent in the problem setup. For
example, it is assumed that memory on the robot’s on-board computer is limited, and
only four values of data are stored. Also, communication between robots is limited to the
two nearest neighbors. The data that can be communicated consist of positions and signal
strengths. Because of assumed limits in the motor control system, only one movement
instruction can be returned with each execution of the behavior program. This instruction
allows the robot to move ahead one grid point or to turn to a new direction while
maintaining position.

CEDAR’s computer simulations to generate a suitable genetic algorithm consisted of a
population of 200 to 500 robots on each processor, running up to 128 processors on
Sandia’s compute cluster Siberia (http://www.cs.sandia.gov/cplant). Obstructive walls
were sometimes included so that the simulated robots would learn to maneuver around
obstacles. A photograph of Siberia, a cluster visually similar to an older cluster named
Alaska, is presented in Fig. 3. Siberia and Alaska’s configuration at the time of this
writing is given in Table 3.

http://www.cs.sandia.gov/cplant


9

Signal Source Models

A total of four signal source models were considered. The equations governing each are
given in Table 2. Mathematical representations of the models, generated using
Mathematica[3], are shown in Fig. 4. The simplest model, Model 0, consists of a 1/r2

steady-state signal, as illustrated in Fig. 4a. Three time- and spatially-varying models
were also considered. Illustrated in Figs. 4b, c, and d are Models 1, 2, and 3, respectively.
Each of these functions has multiple local peaks that move around considerably as the
robots search for the most likely signal peak. A sample of the maximum-peak movement
for the unsteady models is given in Figs. 5a, b, and c.

Results

A. Simulation: Genetic Algorithm for Non-Noisy Signal Sources

The first attempts at generating genetic algorithms centered on modeling each signal
source model. Wall-like obstructions were placed randomly on the grid so that the
simulated robots would learn to maneuver around them. This became a very
computationally intensive process since the signal sources for Models 1, 2, and 3 were
time-varying and complicated, especially near the multiple center peaks.

Various attempts were made to accelerate the convergence. For example, more functions,
such as exponential and sinusoidal, were added to the code from which the genetic
algorithm would be generated. The reasoning behind this approach was that if the
algorithm needed an exponential function that would otherwise be built from Taylor-
series-like terms, for example, then adding this function to the list of possible functions to

Table 2. Equations for Signal Source Models

Model # Equation(s)
0 2/1 r
1 ]4)520[cos(

22 −−++− − tre r θπ
2 ]4)45cos()410cos([cos

22 −−−− − ttre r θπ

3

]4)44cos()42cos([cos
2

1)
100

( 2

22

−−−−
−−

tytxe
yx

π
πσ

σ ,   0≥x

and

]4)44cos()42cos([cos
2

1)( 2

2
2

−−−−
−−

tytxe
y

x

π
πσ

σ ,  0<x

where

                  22 yxr += , )arctan(
x

y=θ , t = time,  and 22 += xσ



10

be chosen would negate the necessity to bu
proved to be slowly convergent, possibly
complexity to the simpler algorithm being 
choices to the list of available functions alge
of options from which to choose as a decis
could be considered for use in each node in a
algorithm became extremely tedious.

To alleviate the convergence problems, the a
of using the algorithm generated for the s
models. No walls were simulated since it was
would not initially contain obstructions.

Simulated vehicle movement using the gen
generated using the code ROBOCOP, liste
generated by CEDAR is inserted in the fun
Appendix B, to complete the code. Samp
Appendix C. The Mathematica program used 
Appendix D.

The Model 0 result is illustrated in Fig. 6
algorithm to the remaining models is show
algorithm worked very well for all signals fo
a surprising result considering the complexity
However, further thought leads one to conclu
steady-state signals may well be sufficient e
sources as long as sampling rates are high rela

B. Field Test:  Coupling the Genetic Algorith

The rovers used in the field tests were Sand
Rover (RATLER) vehicles. Typical RATLER
are approximately the size of two shoeboxes p

 Table 3. Configuration of San
(go to http://www.cs.sandia.go

AL
Processor DEC A
Processor speed 500
Operating system L
Total number of nodes
Number of processors per node
Memory per node 196 

Parallel I/O bandwidth
(scalable)

40 MBytes/s
network conn
dia’s Parallel Compute Clusters
v/cplant for more information).

ASKA SIBERIA
lpha EV 56 DEC Alpha EV6
 MHz 500 MHz
inux Linux
270 592

1 1
MBytes 560 nodes have 256 MBytes;

32 nodes have 1 GByte
ec over 4 40 MBytes/sec over 4 network
ild the Taylor series. However, this also
 because the functions added too much
generated at the time. Also, adding more
braically increased the algorithm’s number
ion tree was formed. That is, the function
 tree. As a result, convergence to a best-fit

uthors decided to examine the possibilities
teady-state Model 0 for the time-varying
 decided that the to-be-conducted field tests

etic algorithm derived for Model 0 was
d in Appendix B. The genetic algorithm
ction MoveGA, the last function listed in
le output of ROBOCOP is presented in
to graphically display the results is given in

a, while the application of the identical
n in Figs. 6b, c, and d. As shown, the

r the sampling rates considered. This seems
 of the other models compared to Model 0.
de that a single-peak-finding algorithm for
ven for time-varying, multiple-peak signal
tive to peak movement.

m with Sandia’s RATLERs

ia’s Robotic All-Terrain Lunar Exploration
 vehicles are shown in Fig. 7. The largest
laced side by side. RATLER vehicles were

ections (enfs) connections (enfs)

http://www.cs.sandia.gov/cplant


11

developed by Sandia as a prototype vehicle for a lunar mission. Each vehicle is typically
equipped with an Intel 486 computer, differential GPS receiver, spread spectrum two-
way packet radio, electronic compass and tilt sensors, video camera, and RF video
transmitter. Three RATLERs of the type shown in Fig. 7a were used during the tests.
This was the minimum number needed for vehicle-to-vehicle communications as
provided for in the genetic algorithm.

The base station equipment with which the RATLERs stay in constant communication
consists of a Pentium laptop computer, spread spectrum two-way packet radio,
differential GPS base receiver, RF video receiver, and a battery power source. The
equipment is contained within a small trailer for mobility. The base station sends
commands and queries to the RATLERs over the packet radio. The communication
network is configured as a token ring.  Hence, if the base station becomes non-functional,
the vehicles will continue to communicate. Also, if either the vehicle or base station
misses its turn to communicate, communications can be re-established after a specified
delay.

During field tests, the operator places the RATLERs in autonomous navigation mode.  A
live video image from one of the vehicles can be displayed on the laptop along with the
current position of the vehicle on a Geographic Information System (GIS) map. Multiple
RATLERs are driven to operator-specified set points using differential GPS and a
magnetic compass, where they are allowed to navigate on their own to the source using
the genetic algorithm controlling program. The positioning accuracy of the vehicles is
typically 1 meter.

As a result of its success in finding the peaks of all signal models, the algorithm for
Model 0 was implemented on robotic rovers for field tests. The signal source was a loud
speaker placed in a large field so as to closely simulate the 1/r2 Model 0 source. The
RATLERs were placed in a random position about the source. The genetic algorithm
previously loaded into the RATLERs onboard memory was then executed and the
vehicles were allowed to move about as directed by the algorithm.  No obstructions were
placed between the rovers and signal source.

Direct observations of the ensuing test were that the vehicles found the source but
wandered significantly beforehand. The wandering was attributed to signal noise that
may have been caused by nearby vehicle traffic, wind, and possibly electronic component
tolerances. Signal noise was not due to vehicle movement since signals were generated
only after each RATLER stopped momentarily. Base station equipment recorded the
noise to be as high as 10% of the signal source. Noise was not modeled in the initial
algorithm for Model 0.

It was also discovered that a RATLER acting alone showed nearly identical behavior to
that when all three were attempting to locate the target. This apparently indicated that the
vehicles were not communicating with each other even though provisions such as
registers were made available with the functions given in Table 1. Computer simulations
using only one simulated robot reinforced the conclusion that the vehicles were not
communicating as originally believed. Implications are that the vehicles were acting



12

autonomously and not collectively, as should be in the case of a swarm of vehicles. It is
unknown why this occurred, but it is certainly an area for future research.

C. Simulation: Non-Noisy Genetic Algorithm Applied to Noisy Signals

Noise was introduced into the signal source used in Model 0’s simulator. The original
genetic algorithm was then used to perform a post-mortem simulation and analysis of the
field tests. A random number generator was used to perturb the original signal within a
user-specified percentage at each time step. This would hopefully reveal the effects of
noise on the robot convergence path.

Results of the robot convergence path are illustrated in Fig. 8. Shown in Fig. 8a is the
convergence path for a 5% noise signal. The simulated rover finds the peak even though
the signal strength is slightly perturbed. However, an 8% perturbation causes the
simulated rover to never converge, as illustrated in Fig. 8b. Thus, the genetic algorithm
for Model 0 is apparently robust enough to handle small perturbations to around 5%.
However, higher perturbations cause the robot to wander as observed in the field test.

At this point, two alternatives became obvious to alleviate the wandering. The first
approach was to lower the signal noise in some way. This was quickly abandoned, since
the factors causing the noise levels were out of the operators’ control. It is also possible
that higher noise levels may exist during actual future applications and that these levels
could not be predicted beforehand.

The second approach was to introduce noise in the code that generates the genetic
algorithm.

D. Simulation: Genetic Algorithm for Noisy Signal Sources

It was thought that the genetic algorithm for Model 0 could be regenerated with the
ability to process noisy signals. The new algorithm, if successful, would allow the rovers
to find valid signal peaks even through a ‘dirty’ signal. Once again, so as not to add more
complexity to the problem, walls were not modeled.

Significant computer time was spent on this approach, but without much success. Project
deadlines prevented a thorough attack on this problem, but preliminary analyses indicated
simulated rovers would find their way to a fairly large distance from the peak, and no
closer. It is not entirely understood why this happened. However, better convergence
might be achieved if the algorithm ensured each rover communicated with some of its
nearest neighbors, thereby triangulating the signal source. As has been discussed, rover-
to-rover communications were apparently not occurring in the original Model 0 genetic
algorithm. Hence, another area of research should include a study of the ability of genetic
algorithms to intelligently process noisy signals.



13

Summary and Conclusions

This report documents a research effort in which a genetic algorithm code was developed
and ported to Sandia’s parallel compute clusters. The code was modified to use the MPI
message passing protocol. Efficiency was improved by reducing excessive message
passing between the master node and slave nodes. The ability to investigate time-varying
signal sources was added to the original code. Visualization schemes were developed and
implemented for investigating simulated robot behavior before running field tests with
actual hardware.

The result of this effort, a genetic algorithm, has been implemented in hardware as a
robot controlling program. Field tests were conducted using Sandia’s RATLER robotic
vehicles attempting to locate a low humming stereo speaker. Tests were successful,
though significant wandering was observed that was not evident during computer
simulations. This behavior is believed to be due to signal noise. Project deadlines
prevented generating a genetic algorithm that could filter noise and locate the peak
efficiently. It was also noticed that the algorithm resulted in autonomous, rather than
collective, robot behavior.  The factors that govern this behavior should be a topic of
future research.

An interesting finding of this research was the fact that a genetic algorithm developed for
a simple test case proved very robust for more complex applications and signals.
Computer simulations showed that the algorithm developed for a simple 1/r2 case proved
sufficient for much more complicated applications. This should be kept in mind in any
future research involving applying genetic algorithms to complicated applications: keep it
as simple as possible. Extensions of simple algorithms may be possible for much more
complicated applications.

In conclusion, the authors believe genetic algorithms have a strong future at Sandia,
especially when applied to problems that have no definitive analytical answers, but where
a ‘good’ solution will do. Future areas of research should include an approach that
ensures rover-to-rover communications and the study of the effects of noisy signals on
obtaining acceptable rover behavior. It is hoped that this report gives impetus to
additional research in these areas so that more robust genetic algorithms may be
developed.

References

1. Koza, J. R., Genetic Programming, On the Programming of Computers by Means
of Natural Selection, MIT Press, 1992.

2. Pryor, R. J., “Developing Robotic Behavior Using a Genetic Programming
Model,” SAND98-0074, Sandia National Laboratories, Albuquerque, New
Mexico, January 1998.

3. Wolfram, S., The Mathematica Book, 3rd edition, Wolfram Media & Cambridge
University Press, 1996.



14

[Intentionally Left Blank]



Start

Pointer 1

Figure 1. Example of a 5-node, 3
Add
0
1
2
0
0

Pointer 2
Value
2.3
0
0
0
0

15

Pointer 3

-level decision tree 
Multiply
0
3
4
0
0

Pointer 4
Value
5.9
0
0
0
0

representing y=2
Value of x
0
0
0
0
0

.3 + 5.9x.



WALLS

TARGETS

SIMULATED
ROBOTS

a) Step 0

b) Step 36

c) Step 84
Figure 2. Select, top-view convergence sequences of a representative genetic algorithm.

16



17

Figure 3. Sandia’s parallel compute cluster, ALASKA/SIBERIA. For more
details, go to web site http://www.cs.sandia.gov/cplant.



50Y 50Y
-50

-25

0

25

50

X

-50

-25

0

25

0

50

100

150

200

Signal

-50

-25

0

25

50

X

-50

-25

0

25

25

50Y

25

50Y
-50

-25

0

X

-50

-25

0

0

2

4

6

Z

-50

-25

0

X

-50

-25

0

Figure 4. Various
a) Model 0
25

50

25

50
b) Model 1
18

 source signal models used.



19

-50

-25

0

25

50

X

-50

-25

0

25

50Y

0

2

4

6

Z

-50

-25

0

25

50

X

-50

-25

0

25

50Y

-50

-25

0

25

50

X

-50

-25

0

25

50

Y

0

0.5

1

1.5

Z

-50

-25

0

25

50

X

0

0.5

1

1.5

Z

d) Model 3

c) Model 2

Figure 4. Concluded



20

-2 -1 1 2

-1

-0.5

0.5

1

1.5

2

a) Model 1, 0<t<10 sec

-10 -7.5 -5 -2.5 2.5 5 7.5

-10

-8

-6

-4

-2

2

4

b) Model 2, 0<t<10 sec

Figure 5. Peak movement for the various signal source models.



21

- 1 1 2 3

- 3

- 2

- 1

1

2

3

c) Model 3, 0<t<10 sec

Figure 5. Concluded.



22

10.2 seconds

-50

-25

0

25

50

X
-50

-25

0

25

50

Y

0

50

100

150

200

Signal

-50

-25

0

25

50

X

a) Model 0, t=10.2 sec

20.2 se conds

-50

-25

0

25

50

X

-50

-25

0

25

50

Y

0

2

4

6

Z

-50

-25

0

25

50

X

0

2

4

6

Z

b) Model 1, t=20.2 sec

Figure 6. Simulated vehicle movement for the signal source models.



23

15.1 seconds

-50

-25

0

25

50

X

-50

-25

0

25

50

Y

0

2

4

6

Z

-50

-25

0

25

50

X

0

2

4

6

Z

c) Model 2, t=16.1 sec

15.1 seconds

-50

-25

0

25

50

X

-50

-25

0

25

50

Y

0

0.5

1

1.5

Z

-50

-25

0

25

50

X

0

0.5

1

1.5

Z

d) Model 3, t=15.1 sec

Figure 6. Concluded.



Figure 7. RATLER vehicles devel
a)
2

o

b)
4

ped at Sandia National Laboratories.



25

20.2 seconds

-50

-25

0

25

50

X
-50

-25

0

25

50

Y

0

50

100

150

200

Signal

-50

-25

0

25

50

X

20.2 seconds

-50

-25

0

25

50

X
-50

-25

0

25

50

Y

0

50

100

150

200

Signal

-50

-25

0

25

50

X

a) 5% signal noise

b) 8% signal noise

Figure 8. Model 0 source illustrating algorithmic convergence for 5% signal noise and
non-convergence for 8% signal noise.



26

[Intentionally Left Blank]



A-1

Appendix A
CEDAR Pseudo-Code Program Listing

> # include       Header files

> Define global variables

> #define          Constants and parameters

1) main (unsigned int argc, char *argv[])  {

� Initialize Message Passing Interface (MPI) environment
�    if (NodeNum == 0 )
�      HandleNodeZero();
�    else
�      HandleOtherNodes();
}

2) void HandleNodeZero () {

� Print initialized quantities
� Call ReadList{} to read the best tree, if output from previous run
� Call randomng{} to generate random number
� Loop over the number of generations:
� Loop over number of compute nodes
� Wait for incoming trees to node zero
� Check each incoming tree for fitness; if best, replace previous tree
� If maximum number of generations reached, send message to all nodes to quit
� Write the best tree to disk
� Return to main
}

3) void HandleOtherNodes () {

� Initialize trees, parameters
� Call randomng{} to generate random number
� Loop over population size

o Determine and store best tree on current compute node
� Loop over number of generations

o Implement mutation, reproduction, crossover to generate new tree
o Define current best tree

� Send best tree to node zero
� Quit searching for best tree when node 0 says maximum number of generations

reached
� Return to main

}

4) double EvalTree (AtomType *ptr, long ntsx) {

� Loop over number of tests to run to determine best trees
o Define wall  positions if used
o Define initial target position; initial robot positions

� Loop over number of cycles to be done for each test
� Loop over number of robots



A-2

o Determine signal strength measured by each robot
o Determine each robots’ nearest robot neighbors
o Move the robots according to current genetic algorithm
o End loop over cycles

� Determine the distance the robots are from the target
� End loop over tests
� Determine the fitness of each tree
� Return the fitness value

}

5) AtomType * GetBestTree (AtomType *bestIndiv)  {
� Receive the best tree from compute Node 0

}

6) void KillNodes () {
� Kill all compute nodes when finished

}

7) OSErr InitManager ()  {
� Initialize dynamic memory allocation

 }

8) AtomType * myMalloc (void)  {
� Initialize memory allocated for trees

}

9) void myFree(AtomType *ptr)  {
� point to next location of free memory block

}

10) void HandleError (int errAction, OSErr err, char *script)  {
� Error handling routine for CEDAR

}

11) double  RandomDouble ( double start, double stop ) {
� Determine random number to type double precision

}

) 12) long  RandomLong (long istart, long istop) {
� Determine random number to type long

}

) 13) double randomng(int *pp) {
� Random number generator

}

) 14) double eval (AtomType *ptr, RoBugType *bug) {
� Compute the value of each tree node using assigned functionals

}

) 15) long TreeSize (AtomType *ptr)  {
� Compute the number of nodes in each tree structure

}



A-3

) 16) void CountNode (AtomType *ptr)  {
� Count and set points for each node

}

) 17) long TreeDepth (AtomType *ptr)  {
� Determine the number of levels of each tree

}

) 18) void NodeDepth (AtomType *ptr)  {
� Determine depth of each tree node

}

) 19) void DeleteOffspring (AtomType *ptr)  {
� Free memory from tree nodes no longer needed

}

) 20) AtomType * DuplicateTree (AtomType *fromptr)  {
� Duplicate a tree node using CopyNode

}

) 21) void CopyNode (AtomType *fromptr, AtomType *ptr)  {
� Free a block of memory
� Copy a tree node from one block of memory to another

}

) 22) AtomType * CrossOver (AtomType *ptr1, AtomType *ptr2)  {
� Perform crossover algorithm on two tree nodes’ offspring

}

) 23) void PrintTree (AtomType *ptr)  {
� Print size and depth of tree to appropriate output file

}

) 24) void PrintNode (AtomType *ptr)  {
� Print tree nodes

}

) 25) AtomType * GenerateTree ()  {
� Initialize maximum depth of initial tree

}

) 26) void GenNode (AtomType *ptr)  {
� Randomly generate tree nodes

}

) 27) void WriteCProgram (AtomType *ptr, long progIndex)  {
� Output initialization information formatted in C

}

) 28) void ArrayNode (AtomType *ptr, long nsize)  {
� determine memory pointers for tree nodes

}



A-4

) 29) void WriteCProgramNode (AtomType *ptr, FILE *ProgramFP)  {
� Output tree nodes formatted in C

}

) 30) void WriteFProgram (AtomType *ptr, long progIndex)  {
� Output initialization information formatted in FORTRAN

}

) 31) void WriteFProgramNode (AtomType *ptr, FILE *ProgramFP)  {
� Output tree nodes formatted in FORTRAN

}

) 32) long SelectTree (double fitness[])  {
� Determine which tree is best

}

) 33) AtomType * TreeToList (AtomType *ptr)  {
� Determine absolute to relative memory address for each node

}

) 34) void ListNode (AtomType *ptr)  {
� Determine pointer values for each tree’s nodes

}

) 35) void AbsToRelAdr(AtomType *ptr, long size)  {
� Determine node’s relative address, given absolute address

}

) 36) void RelToAbsAdr (AtomType *ptr, long size)  {
� Determine node’s absolute address, given relative address

}

) 37) void WriteList (AtomType *ptr, long listIndex)  {
� Open and write list file

}

) 38) AtomType * ReadList (char ListFileName[])  {
� Open and read list file

}

) 39) void MutateTree (AtomType *ptr)  {
� Determine pointer of tree node at which to begin mutation
� Determine level at which tree is mutated
� Generate new tree starting at mutation point

}

) 40) void ZeroHitCount (AtomType *ptr)  {
� Zero node hit count

}

) 41) void ClearGrid (void)  {
� Sets all points in the grid table to 0

}



A-5

) 42) void ClearGridPoint (long xpoint, long ypoint)  {
� Sets individual grid points in the grid table to 0

}

) 43) long SetGridPoint (long xpoint, long ypoint)  {
� Check fidelity of grid points to ensure grid points are within specified ranges
� Check that grid points to which robots can potentially move are not a wall point

}

===================================



B-1

Appendix B
ROBOCOP.C  Program Listing

(as run for Model 0)

/***************************************************/
/*                                                                                                  */
/*  The GA Robug Simulator Program.                                       */
/*    This is a test program before implementing                         */
/*    GA code on hardware                                                           */
/*                                                                                                  */
/*  Last modified on:  April, 2000                                               */
/*                                                                                                  */
/*  Developed by:                                                                        */
/*                   D. Barnette                                                            */
/*                   J. Feddema                                                            */
/*                                                                                                 */
/***************************************************/

/********************************/
/*        header files                                  */
/********************************/

#include "sys/stat.h"
#include "sys/types.h"
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include "signal.h"
#include "math.h"

/********************************/
/*        output files                                  */
/********************************/
/* Home directory (use \\ for each \ needed) */
char         HomeDirectory[]="D:\\Program Files\\DevStudio\\MyProjects\\Robug_Simulator\\";
FILE       *OutputFP;
char  OutputFileName[50];

/********************************/
/*          defines             */
/********************************/

#define grid_dim_lat 11 /* number of latitude points */
#define grid_dim_lon 11 /* number of longitude points */
#define grid_spacing_lat_m 3 /* meters (integer values, >= 1); spacing between
latitude grid points  */
#define grid_spacing_lon_m 3 /* meters (integer values, >= 1); spacing between
longitude grid points */
#define grid_scale_delta_lat_mpmas 0.0310444444
#define grid_scale_delta_lon_mpmas 0.0254302890
                                    /*  2.54303 cm = milliarcsecond latitude */
                                    /*  3.10444 cm = milliarcsecond longitude */

        /* 2543.03 cm = 1 arcsec latitude  = 25.4321 meters  */
        /* 3104.44 cm = 1 arcsec longitude = 31.0424 meters */

                                     /*  0.0254303 m = 1 milliarcsecond latitude  */



B-2

                       /*  0.0310444 m = 1 milliarcsecond longitude */
                                     /*  3 meters = 117.9612 milliarcseconds latitude */

         /*  3 meters =  96.6420 milliarcseconds longitude */

#define midpoint_lat (grid_dim_lat+1)/2
#define midpoint_lon (grid_dim_lon+1)/2

#define numvehicles       5 /* total number of vehicles */
#define this_vehicle_ID                         3       /* choose number between 0 and (numvehicles-1) */
#define REALLYBIGNUMBER           99999999999999.0 /* arbitrarily-big number */
#define TEST2SEED                             765 /* random number generator seed */
#define SignalStrengthMax                   4095 /* robot hardware sees 0-4095 signal strength */
#define GridMaxRadius                        50  /* plus and minus values in meters in which robots are placed

     relative to source */

/* define target location */
#define target_location_lat 126000000 /* Lat =  35 degs North in milliarcseconds*/
#define target_location_lon 921600000 /* Lon = 256 degs East  */

#define total_iterations                     50    /* run this many iterations */
#define iterations_per_second                5 /* iterations per second */
/* Note: total time = total_iterations / iterations_per_second */

#define Pi        3.141592654

/********************************/
/*          structs             */
/********************************/
typedef struct RoBugLocation
{
    long    RoBugID;
    long    RoBugXPOS;
    long    RoBugYPOS;
    long    RoBugDIR;
    double  RoBugSIG;
    long    RoBugXVERT;
    long    RoBugYVERT;
    long    RoBugXHORZ;
    long    RoBugYHORZ;
    long    RoBug1XPOS;
    long    RoBug1YPOS;
    double  RoBug1SIG;
    long    RoBug2XPOS;
    long    RoBug2YPOS;
    double  RoBug2SIG;
    double  aRegister;
    double  bRegister;
    double  cRegister;

double Average_X_Register;
double  Average_Y_Register;
long WallAhead;

} RoBugType;

/********************************/
/*          globals             */
/********************************/



B-3

float time;
double delta_lat, delta_lon;
int         iseed;
double sseed;

/* static memory allocation */
/* RoBugType RoBug[numvehicles]; */

/* dynamic memory allocation */
RoBugType *RoBug;

// In InitGA(), RoBug = (RoBugType *)malloc( numvehicles * sizeof( RoBugType ) );
// Called RoBug[i] in other routines.

/********************************/
/*                       routines                        */
/********************************/
int SignalOne( long lat, long lon );
void TestGA();
void InitGA();
void UpdateGA(long *dlat, long *dlon, int id, long lat, long lon, int amplitude );
void KillGA();
void Update_VehicleGA(int id, long lat, long lon, int amplitude);
double MoveGA(RoBugType *bug);
double      RandomDouble ( double start, double stop );
long        RandomLong (long istart, long istop);
double     randomng(int *pp);
double      MoveAhead (bug);
double      TurnRight (bug);
double      TurnNorth (bug);
double      TurnEast  (bug);
double      TurnSouth (bug);
double     TurnWest  (bug);

// Suggestion put main() and TestGA() in another file

/***************************** main ****************/
void main()
{
 /* define output file name */
    sprintf(OutputFileName,"%sRobocopOutputMod0.txt",HomeDirectory);

/*   sprintf(OutputFileName,"GPOutput"); */

/* open output data file */
    OutputFP=fopen(OutputFileName,"w");

  iseed=TEST2SEED;

 delta_lat = grid_spacing_lat_m / grid_scale_delta_lat_mpmas; // milli-arcseconds per grid point
 delta_lon = grid_spacing_lon_m / grid_scale_delta_lon_mpmas; // milli-arcseconds per grid point

 /* to console */
 printf(" total iterations = %d\n",total_iterations);
 printf(" iterations per second = %d\n",iterations_per_second);



B-4

 printf(" number of vehicles = %d\n",numvehicles);
 printf(" grid_spacing_lat_m = %d\n",grid_spacing_lat_m);
 printf(" grid_spacing_lon_m = %d\n",grid_spacing_lon_m);
 printf(" grid_scale_delta_lat_mpmas = %f\n",grid_scale_delta_lat_mpmas);
 printf(" grid_scale_delta_lon_mpmas = %f\n",grid_scale_delta_lon_mpmas);
 printf(" delta_lat (mas/lat_grid_step) = %f\n",delta_lat);
 printf(" delta_lon (mas/lon_grid_step) = %f\n\n",delta_lon);

 /* to OutputFileName */
 fprintf(OutputFP," total iterations = %d\n",total_iterations);
 fprintf(OutputFP," iterations per second = %d\n",iterations_per_second);
 fprintf(OutputFP," number of vehicles = %d\n",numvehicles);
 fprintf(OutputFP," grid_spacing_lat_m = %d\n",grid_spacing_lat_m);
 fprintf(OutputFP," grid_spacing_lon_m = %d\n",grid_spacing_lon_m);
 fprintf(OutputFP," grid_scale_delta_lat_mpmas = %f\n",grid_scale_delta_lat_mpmas);
 fprintf(OutputFP," grid_scale_delta_lon_mpmas = %f\n",grid_scale_delta_lon_mpmas);
 fprintf(OutputFP," delta_lat (mas/lat_grid_step) = %f\n",delta_lat);
 fprintf(OutputFP," delta_lon (mas/lon_grid_step) = %f\n\n",delta_lon);

TestGA();
}

/***************************** TestGA ****************/
void TestGA()
{

unsigned int timestep;
int vehicle;
long lat, lon, dlat, dlon;
int amplitude, neighbor1_ID, neighbor2_ID;

InitGA( );

/* check if the value 'this_vehicle_ID' is out of range */
if(this_vehicle_ID >= numvehicles || this_vehicle_ID < 0 )
{

printf("\n Quantity this_vehicle_ID out of range \n");
printf("     numvehicles = %d\n",numvehicles);
printf(" this_vehicle_ID = %d\n",this_vehicle_ID);
exit(1);

}

/* print heading for output */
printf("\n \n >> Locations of all vehicles except vehicle # %d \n",this_vehicle_ID);
printf("  Time  Veh   Dir     Lat        Lon   Target_lat Target_lon"

"    Signal  X dist(m) Y dist(m)\n");
fprintf(OutputFP,"\n \n >> Locations of all vehicles except vehicle # %d \n",this_vehicle_ID);
fprintf(OutputFP,"  Time  Veh   Dir     Lat        Lon   Target_lat Target_lon"

"    Signal  X dist(m) Y dist(m)\n");

/* For other stationary vehicles */
for(vehicle=0; vehicle < numvehicles; vehicle++)
{

if(vehicle != this_vehicle_ID)
{

/* locate vehicles within + or - GridMaxRadius meters of specified target location */



B-5

lat=target_location_lat + RandomDouble(-GridMaxRadius,GridMaxRadius) /
grid_scale_delta_lat_mpmas;

lon=target_location_lon + RandomDouble(-GridMaxRadius,GridMaxRadius) /
grid_scale_delta_lon_mpmas;

/* get signal amplitude for each robot */
amplitude = SignalOne( lat, lon );

/* update the robot's struct */
Update_VehicleGA(vehicle, lat, lon, amplitude);

printf( "%6d %3d %5d %10ld %10ld %10ld %10ld %10.5f %8.4f %8.4f \n",
0, vehicle, RoBug[vehicle].RoBugDIR, lat, lon,
target_location_lat, target_location_lon,
RoBug[vehicle].RoBugSIG,

     -(lon - target_location_lon)*grid_scale_delta_lon_mpmas,
(lat - target_location_lat)*grid_scale_delta_lat_mpmas
);

fprintf( OutputFP,"%6d %3d %5d %10ld %10ld %10ld %10ld %10.5f %8.4f %8.4f \n",
0, vehicle, RoBug[vehicle].RoBugDIR, lat, lon,
target_location_lat, target_location_lon,
RoBug[vehicle].RoBugSIG,
-(lon - target_location_lon)*grid_scale_delta_lon_mpmas,
(lat - target_location_lat)*grid_scale_delta_lat_mpmas
);

}
}

/* For this vehicle */
    lat=target_location_lat + RandomLong(-GridMaxRadius,GridMaxRadius) /
grid_scale_delta_lat_mpmas;

lon=target_location_lon + RandomLong(-GridMaxRadius,GridMaxRadius) /
grid_scale_delta_lon_mpmas;

RoBug[this_vehicle_ID].RoBugXPOS = lon / delta_lon;
RoBug[this_vehicle_ID].RoBugYPOS = lat / delta_lat;

/* print heading for output */
printf("\n \n >> Coordinate time history of vehicle # %d \n",this_vehicle_ID);
printf("            [1 is where the robot WAS; 2 is current location]\n");
printf(" Time Nbr1 Nbr2 Dir  Lat1       Lon1       Lat2       Lon2"

"     TargetLat  TargetLon  Signl  Xdist(m) Ydist(m)\n");

fprintf(OutputFP,"\n \n >> Coordinate time history of vehicle # %d \n",this_vehicle_ID);
fprintf(OutputFP," 1 is where the robot WAS; 2 is current location\n");
fprintf(OutputFP," Time Nbr1 Nbr2 Dir  Lat1       Lon1       Lat2       Lon2"

"     TargetLat TargetLon  Signl  Xdist(m) Ydist(m)\n");

/* time loop */
for (timestep=0; timestep<10000; timestep++)
{

time=(float)timestep/iterations_per_second;

amplitude = SignalOne( lat, lon );

UpdateGA( &dlat, &dlon, this_vehicle_ID, lat, lon, amplitude,
&neighbor1_ID, &neighbor2_ID);



B-6

printf( "%5.2f %3d %3d %3d %10ld %10ld %10ld %10ld %10ld %10ld %6.1f %8.4f
%8.4f \n",

time, neighbor1_ID, neighbor2_ID, RoBug[this_vehicle_ID].RoBugDIR,
lat, lon, dlat, dlon,
target_location_lat, target_location_lon,
RoBug[this_vehicle_ID].RoBugSIG,
-(dlon - target_location_lon)*grid_scale_delta_lon_mpmas,
(dlat - target_location_lat)*grid_scale_delta_lat_mpmas
);

fprintf( OutputFP,"%5.2f %3d %3d %3d %10ld %10ld %10ld %10ld %10ld %10ld
%6.1f %8.4f %8.4f \n",

time, neighbor1_ID, neighbor2_ID,RoBug[this_vehicle_ID].RoBugDIR,
lat, lon, dlat, dlon,
target_location_lat, target_location_lon,
RoBug[this_vehicle_ID].RoBugSIG,
-(dlon - target_location_lon)*grid_scale_delta_lon_mpmas,
(dlat - target_location_lat)*grid_scale_delta_lat_mpmas

);

/* Assume we ge there immediately */
lat = dlat;
lon = dlon;

if(timestep == total_iterations) {
printf("END\n");
fprintf(OutputFP,"END");
exit(1);

}

}

/* UpdateGA(&dlat, &dlon, vehicle, RoBugLocal[vehicle].lat, RoBugLocal[vehicle].lon,
RoBugLocal[vehicle].amplitude );
*/

KillGA(    );  // Note change ***
}

/***************************** RandomDouble ****************/

double  RandomDouble ( double start, double stop )
{

/*   return (start+(stop-start)*rand()/32767.0); */

/* dwb */
    return (start+(stop-start)*randomng(&iseed));

}

/***************************** RandomLong ******************/

long  RandomLong (long istart, long istop)
{

    int i;



B-7

    long delta;
double random;

    i=0;
    do {
/*     delta=(istop-istart+1) * (rand()/32767.0); */
        i++;

        if(i>100) {
            printf(" %%%%% FUNCTION NOT FINDING RANDOM NUMBER BETWEEN LIMITS! \n");
            printf("   In RandomLong, i = %d \n",i);
            printf(" >>>>  RL: istart, istop, delta = %d %d %d \n",
                istart,istop,delta);
            printf(" >>>>       iseed, &iseed = %d, %d \n",iseed, &iseed);
            exit(1);
        }

/* dwb */
random=randomng(&iseed);

              delta=(istop-istart+1) * random;

    }  while (istart+delta < istart || istart+delta > istop);

    return (istart+delta);

}

/**************** random number generator ******************/

double randomng(int *pp)
{

/*
    returns a value between 0 and 1
        mm      =       length of unsigned long integer
        aa      =       number to ensure good random number generation
*/

    double aa = 16807.0;
    double mm = 2147483647.0;
/*      double sseed; */
/*      int iseed; */

    sseed=*pp;

/*      printf(" >>  pp = %d \n", pp);
        printf(" >> *pp = %d \n",*pp);
        fflush(stdout);
*/

    sseed=fmod(aa*sseed,mm);
    iseed=sseed;
/*      RandomPointer = &iseed; */
/*      printf(" >> iseed = %d \n",iseed); */
/*
        printf(" >>?? sseed, mm = %f, %f \n",sseed,mm);



B-8

        printf(" >>?? iseed = %d \n",iseed);
        fflush(stdout);
*/

/* for double random(int *pp) */
    return sseed/mm;

/* for int random(int *pp) */
/*      return iseed; */

}

/***************************** SignalOne ****************/
int SignalOne( long lat, long lon ) {

double signal_strength, rsqr, rsqrMax;
int signal;
float xdiff, ydiff;

/* Calculate signal strength for all robots */

xdiff = (lon - target_location_lon) * grid_scale_delta_lon_mpmas ;
ydiff = (lat - target_location_lat) * grid_scale_delta_lat_mpmas ;

   rsqr=xdiff*xdiff+ydiff*ydiff;

/*     if (rsqr > rsqrMax) rsqrMax=rsqr; */

/*-------------------------------------------------------------------------------*/
/* 1. Signal strength: 1/(r**2) */
/* Signal strength needs to vary between 0 and 1 */

/*   original signal in GA code */
/* signal_strength=1.0/(rsqr + 1.); */

/* Signal strength appropriate for this code */
/* Fit 1/r**2 equation for 4095 when r=1 meter and 50 when r=50 meters */
/* signal_strength=(rsqrMax - rsqr)/rsqrMax; */ /* values between 0 and 1 */
/* signal=SignalStrengthMax * signal_strength; */ /* values between 0 and SignalStrengthMax */

signal=4045.8092 * (1. / rsqr)+49.1908;
signal=4095*(-0.5*sqrt(rsqr)/50+1.);
if(signal>4095) signal=4095;

if(signal < 0 ) {
printf("\n\n Signal is less than zero in func. SignalOne\n");
printf(" signal = %d\n",signal);
exit(1);

}

    return signal;

}

/***************************** InitGA ****************/



B-9

void InitGA( )
{

int i;

/* dynamically allocate storage to Robug for all vehicles */

/*  (The value of RoBug is a pointer to the allocated memory) */
RoBug = (RoBugType *)malloc( numvehicles * sizeof( RoBugType ) );

/* Memory check for malloc */
if(!RoBug)
{

printf("\n Memory allocation error; program halted \n");
exit(1);

}

/* initialize bug position parameters */
/* Zero everything in struct but ID and DIR */

        for (i=0; i < numvehicles; i++)
{

/* id the vehicle */
            RoBug[i].RoBugID=i;

/* initial heading where rattlers need to go */
            RoBug[i].RoBugDIR=RandomLong(1,4);
/*         printf( " RoBug[i].RoBugDIR = %d \n",RoBug[i].RoBugDIR);
*/

/* Random placement of bugs over grid, spaced randomly within -GridMaxRadius
to +GridMaxRadius meters of each other */

            RoBug[i].RoBugXPOS=0;
            RoBug[i].RoBugYPOS=0;

/* signal received by robug */
RoBug[i].RoBug1SIG=0;

/* wall position */
            RoBug[i].RoBugXVERT=0;
            RoBug[i].RoBugYVERT=0;
            RoBug[i].RoBugXHORZ=0;
            RoBug[i].RoBugYHORZ=0;

/* nearest neighbors */
RoBug[i].RoBug1XPOS=0;
RoBug[i].RoBug1YPOS=0;
RoBug[i].RoBug1SIG=0;
RoBug[i].RoBug2XPOS=0;
RoBug[i].RoBug2YPOS=0;
RoBug[i].RoBug2SIG=0;

/* zero the registers */
            RoBug[i].aRegister=0.0;
            RoBug[i].bRegister=0.0;
            RoBug[i].cRegister=0.0;

RoBug[i].Average_X_Register=0.0;
RoBug[i].Average_Y_Register=0.0;



B-10

        }

}

/***************************** UpdateGA ****************/
void UpdateGA(

/* desired outputs */
/* units: dlat, dlon: milliarcseconds */
long *dlat, long *dlon,

/* inputs */
/* current position, orientation, signal strength for 'this_vehicle' */
/* amplitude varies 0-4095 */
int id,
long lat, long lon, int amplitude,

/*  id of the two nearest neighbors with which the main vehicle communicates */
int *neighbor1, int *neighbor2 )
{

int i, j, jmin1, jmin2;
double rmin, rsqr;
long xdiff, ydiff;

/* scale by delta_lon to get XPOS into grid units; needed for MOVEGA where an
      increment of 1 implies one grid unit */
/*

RoBug[id].RoBugXPOS = lon / delta_lon;
RoBug[id].RoBugYPOS = lat / delta_lat;

*/
RoBug[id].RoBugSIG =  (double) amplitude ; /* / SignalStrengthMax*/

/* Assume no wall ahead, WallAhead=0 (false); if wall, WallAhead=1 (true) */
RoBug[id].WallAhead = 0;

/* Calculate nearest neighbors */

            /* update bug neighbors only for 'this_vehicle_ID' for this simulation */

/* for(i=0; i<numvehicles; i++) { */
i=id;

                jmin1=i;
                jmin2=i;

                /*  find 1st nearest bug */
                rmin=REALLYBIGNUMBER;
                for (j=0; j < numvehicles; j++)

{
                    if (j != i)

{
                        xdiff=RoBug[i].RoBugXPOS - RoBug[j].RoBugXPOS;
                        ydiff=RoBug[i].RoBugYPOS - RoBug[j].RoBugYPOS;
                        rsqr=xdiff*xdiff+ydiff*ydiff;
                        if (rsqr < rmin)

{
                            jmin1=j;



B-11

                            rmin=rsqr;
                        }
                    }
                }

                RoBug[i].RoBug1XPOS = RoBug[jmin1].RoBugXPOS;
                RoBug[i].RoBug1YPOS = RoBug[jmin1].RoBugYPOS;
                RoBug[i].RoBug1SIG  = RoBug[jmin1].RoBugSIG;

*neighbor1=jmin1;

                /*  find 2nd nearest bug */
                rmin=REALLYBIGNUMBER;
                for (j=0; j < numvehicles; j++)

{
                    if (j != i && j != jmin1)

{
                        xdiff=RoBug[i].RoBugXPOS-RoBug[j].RoBugXPOS;
                        ydiff=RoBug[i].RoBugYPOS-RoBug[j].RoBugYPOS;
                        rsqr=xdiff*xdiff+ydiff*ydiff;
                        if (rsqr < rmin)

{
                            jmin2=j;
                            rmin=rsqr;
                        }
                    }
                }
                RoBug[i].RoBug2XPOS=RoBug[jmin2].RoBugXPOS;
                RoBug[i].RoBug2YPOS=RoBug[jmin2].RoBugYPOS;
                RoBug[i].RoBug2SIG=RoBug[jmin2].RoBugSIG;
                *neighbor2=jmin2;
/* } */

/* call the routine generated by CEDAR */
MoveGA(&RoBug[id]);

*dlon =  (double) RoBug[id].RoBugXPOS * delta_lon;
*dlat =  (double) RoBug[id].RoBugYPOS * delta_lat;

}

/***************************** KillGA ****************/
void KillGA()
{
   free ( (char *)RoBug );
}

/***************************** Update_VehicleGA ****************/
void Update_VehicleGA(int id, long lat, long lon, int amplitude)
{
/* update other vehicles */
/* nondimensionalize XPOS and YPOS to grid spacings  for GA algorithm*/
/* unscale SIG for GA algorithm */

RoBug[id].RoBugXPOS = lon / delta_lon;
RoBug[id].RoBugYPOS = lat / delta_lat;
RoBug[id].RoBugSIG =  (double)amplitude ; /* / SignalStrengthMax; */

/* Assume no wall ahead, WallAhead=0 (false); if wall, WallAhead=1 (true) */



B-12

RoBug[id].WallAhead = 0;

}

/***************************** MoveAhead **********************/
double MoveAhead(RoBugType *bug) {

double value;

           if (!bug->WallAhead) {
     switch (bug->RoBugDIR) {

 case 1: /* move north */
 bug->RoBugYPOS++;
 break;

 case 2: /* move east */
 bug->RoBugXPOS++;
 break;

 case 3: /* move south */
 bug->RoBugYPOS--;
 break;

 case 4: /* move west */
 bug->RoBugXPOS--;
 break;

 default:
 exit(1);
 break;

 }
                value = 1.0;
            }
            else {
                value = -1.0;
            }

return value;
}

/***************************** TurnRight **********************/
double TurnRight(RoBugType *bug) {

long direct;
double value;

    direct=bug->RoBugDIR;
        direct++;
        if (direct == 5) direct=1;
        bug->RoBugDIR = direct;

value=1.;

  return value;
}

/***************************** TurnNorth **********************/
double TurnNorth(RoBugType *bug) {



B-13

double value;

    bug->RoBugDIR = 1;
/* ReturnFlag=1; */

value=1;

return value;
}

/***************************** TurnEast **********************/
double TurnEast(RoBugType *bug) {

double value;

    bug->RoBugDIR = 2;
/* ReturnFlag=1; */

value=1;

return value;
}

/***************************** TurnSouth **********************/
double TurnSouth(RoBugType *bug) {

double value;

    bug->RoBugDIR = 3;
/* ReturnFlag=1; */

value=1;

return value;
}

/***************************** TurnWest **********************/
double TurnWest(RoBugType *bug) {

double value;

    bug->RoBugDIR = 4;
/* ReturnFlag=1; */

value=1;

return value;
}

/***************************** MoveGA ****************/

double MoveGA(RoBugType *bug)  {

/* >> INSERT GENETIC ALGORITHM HERE << */

}

/* THE END */



C-1

total iterations = 50
iterations per second = 5
number of vehicles = 5
grid_spacing_lat_m = 3
grid_spacing_lon_m = 3
grid_scale_delta_lat_mpmas = 0.031044
grid_scale_delta_lon_mpmas = 0.025430
delta_lat (mas/lat_grid_step) = 96.635648
delta_lon (mas/lon_grid_step) = 117.969560

>> Locations of all vehicles except vehicle # 3
Time Veh Dir Lat Lon Target_lat Target_lon Signal X dist(m) Y dist(m)

0 0 1 126000012 921601923 126000000 921600000 2092.00000 -48.9024 0.3725
0 1 3 125999457 921600636 126000000 921600000 3138.00000 -16.1737 -16.8571
0 2 1 125998518 921599524 126000000 921600000 2146.00000 12.1048 -46.0079
0 4 3 125999528 921600741 126000000 921600000 3117.00000 -18.8438 -14.6530

>> Coordinate time history of vehicle # 3
1 is where the robot WAS; 2 is current location
Time Nbr1 Nbr2 Dir Lat1 Lon1 Lat2 Lon2 TargetLat TargetLon Signl Xdist(m) Ydist(m)
0.00 0 4 4 125999838 921601572 125999742 921601441 126000000 921600000 2445.0 -36.6450 -8.0095
0.20 0 4 4 125999742 921601441 125999742 921601323 126000000 921600000 2558.0 -33.6443 -8.0095
0.40 0 4 4 125999742 921601323 125999742 921601205 126000000 921600000 2678.0 -30.6435 -8.0095
0.60 4 1 4 125999742 921601205 125999742 921601087 126000000 921600000 2797.0 -27.6427 -8.0095
0.80 4 1 4 125999742 921601087 125999742 921600969 126000000 921600000 2916.0 -24.6420 -8.0095
1.00 4 1 4 125999742 921600969 125999742 921600851 126000000 921600000 3033.0 -21.6412 -8.0095
1.20 4 1 4 125999742 921600851 125999742 921600733 126000000 921600000 3150.0 -18.6404 -8.0095
1.40 4 1 4 125999742 921600733 125999742 921600615 126000000 921600000 3264.0 -15.6396 -8.0095
1.60 1 4 4 125999742 921600615 125999742 921600497 126000000 921600000 3375.0 -12.6389 -8.0095
1.80 1 4 4 125999742 921600497 125999742 921600379 126000000 921600000 3482.0 -9.6381 -8.0095
2.00 1 4 4 125999742 921600379 125999742 921600261 126000000 921600000 3581.0 -6.6373 -8.0095
2.20 1 4 4 125999742 921600261 125999742 921600143 126000000 921600000 3669.0 -3.6365 -8.0095
2.40 1 4 4 125999742 921600143 125999742 921600025 126000000 921600000 3734.0 -0.6358 -8.0095
2.60 1 4 4 125999742 921600025 125999742 921599907 126000000 921600000 3765.0 2.3650 -8.0095
2.80 1 4 1 125999742 921599907 125999742 921599907 126000000 921600000 3753.0 2.3650 -8.0095
3.00 1 4 1 125999742 921599907 125999839 921599907 126000000 921600000 3753.0 2.3650 -4.9982
3.20 1 4 1 125999839 921599907 125999935 921599907 126000000 921600000 3868.0 2.3650 -2.0179
3.40 1 4 1 125999935 921599907 126000032 921599907 126000000 921600000 3967.0 2.3650 0.9934
3.60 1 4 1 126000032 921599907 126000129 921599907 126000000 921600000 3989.0 2.3650 4.0047
3.80 1 4 2 126000129 921599907 126000129 921599907 126000000 921600000 3904.0 2.3650 4.0047
4.00 1 4 2 126000129 921599907 126000129 921600025 126000000 921600000 3904.0 -0.6358 4.0047
4.20 1 4 2 126000129 921600025 126000129 921600143 126000000 921600000 3928.0 -3.6365 4.0047
4.40 1 4 3 126000129 921600143 126000129 921600143 126000000 921600000 3873.0 -3.6365 4.0047
4.60 1 4 3 126000129 921600143 126000032 921600143 126000000 921600000 3873.0 -3.6365 0.9934
4.80 1 4 3 126000032 921600143 125999935 921600143 126000000 921600000 3940.0 -3.6365 -2.0179
5.00 1 4 4 125999935 921600143 125999935 921600143 126000000 921600000 3924.0 -3.6365 -2.0179
5.20 1 4 4 125999935 921600143 125999935 921600025 126000000 921600000 3924.0 -0.6358 -2.0179
5.40 1 4 4 125999935 921600025 125999935 921599907 126000000 921600000 4008.0 2.3650 -2.0179
5.60 1 4 1 125999935 921599907 125999935 921599907 126000000 921600000 3967.0 2.3650 -2.0179
5.80 1 4 1 125999935 921599907 126000032 921599907 126000000 921600000 3967.0 2.3650 0.9934
6.00 1 4 1 126000032 921599907 126000129 921599907 126000000 921600000 3989.0 2.3650 4.0047
6.20 1 4 2 126000129 921599907 126000129 921599907 126000000 921600000 3904.0 2.3650 4.0047
6.40 1 4 2 126000129 921599907 126000129 921600025 126000000 921600000 3904.0 -0.6358 4.0047
6.60 1 4 2 126000129 921600025 126000129 921600143 126000000 921600000 3928.0 -3.6365 4.0047
6.80 1 4 3 126000129 921600143 126000129 921600143 126000000 921600000 3873.0 -3.6365 4.0047
7.00 1 4 3 126000129 921600143 126000032 921600143 126000000 921600000 3873.0 -3.6365 0.9934
7.20 1 4 3 126000032 921600143 125999935 921600143 126000000 921600000 3940.0 -3.6365 -2.0179
7.40 1 4 4 125999935 921600143 125999935 921600143 126000000 921600000 3924.0 -3.6365 -2.0179
7.60 1 4 4 125999935 921600143 125999935 921600025 126000000 921600000 3924.0 -0.6358 -2.0179
7.80 1 4 4 125999935 921600025 125999935 921599907 126000000 921600000 4008.0 2.3650 -2.0179
8.00 1 4 1 125999935 921599907 125999935 921599907 126000000 921600000 3967.0 2.3650 -2.0179
8.20 1 4 1 125999935 921599907 126000032 921599907 126000000 921600000 3967.0 2.3650 0.9934
8.40 1 4 1 126000032 921599907 126000129 921599907 126000000 921600000 3989.0 2.3650 4.0047
8.60 1 4 2 126000129 921599907 126000129 921599907 126000000 921600000 3904.0 2.3650 4.0047
8.80 1 4 2 126000129 921599907 126000129 921600025 126000000 921600000 3904.0 -0.6358 4.0047
9.00 1 4 2 126000129 921600025 126000129 921600143 126000000 921600000 3928.0 -3.6365 4.0047
9.20 1 4 3 126000129 921600143 126000129 921600143 126000000 921600000 3873.0 -3.6365 4.0047
9.40 1 4 3 126000129 921600143 126000032 921600143 126000000 921600000 3873.0 -3.6365 0.9934
9.60 1 4 3 126000032 921600143 125999935 921600143 126000000 921600000 3940.0 -3.6365 -2.0179
9.80 1 4 4 125999935 921600143 125999935 921600143 126000000 921600000 3924.0 -3.6365 -2.0179
10.00 1 4 4 125999935 921600143 125999935 921600025 126000000 921600000 3924.0 -0.6358 -2.0179
END

Appendix C
ROBOCOP.C  Sample Output Listing for Model 0



D-1

Appendix D
Mathematica 4.0 Graphics Program Listing

(as used for Model 0)

Clear[]

(* Author: Daniel W. Barnette, Sandia National Laboratories
*)

(* The list of data, DataList, extracted from ROBOCOP.C output, contains the following items :

             Vehicle                                                          OtherVehicles
============================              =================
Column    Data                                                      Data
----------    ------                                                     ------
       1        Time                                                      Time
       2        Neighbor1 (first closest)                       Vehicle No.
       3        Neighbor2 (second closest)                   Direction
       4        Direction robot is facing                       Latitude
       5        Latitude (milliarcseconds)                    Longitude
       6        Longitude (milliarcseconds)                 Target Latitude
       7        Latitude (milliarcseconds)                    Target Longitude
       8        Longitude (milliarcseconds)                 Signal strength
       9        Target Latitude (milliarcseconds)         X distance from target
      10        Target Longitude (milliarcseconds)     Y distance from target
      11        Signal (varies from 0 to 4095)
      12        X distance from target (meters)
      13        Y distance from target (meters)
  *)

Clear[
  OtherVehiclesPlot,
  VehiclePlot,
  DataFile,
  DataWord,
  Description1, Description2,
  TodaysDateAndTime,
  RowsColumns,
  NumVehicles,
  TotalIterations,
  IterationsPerSecond
  ]

Date[]

Description1 = "Genetic Algorithms Simulator";

Description2 = "Signal Source: 1/r**2";

TodaysDateAndTime := (
    Temp = Date[];
    StringForm[
      "``   Date: ``/``/``    Time: ``:``:``",
      Description1,



D-2

      Temp[[2]], Temp[[3]], Temp[[1]],
      Temp[[4]], Temp[[5]], Temp[[6]]
      ]
    )

(* Uncomment following to check if file can be opened; for debugging code *)

(* ! ! "d:\Program \
Files\DevStudio\MyProjects\Robug_Simulator\RobocopOutputMod0.txt" *)

DataFile =
  OpenRead["d:\Program \
Files\DevStudio\MyProjects\Robug_Simulator\RobocopOutputMod0.txt"]

DataWord = "NULL";

While[
  DataWord != "=" ,
  DataWord = Read[DataFile, Word];
  ]

TotalIterations = Read[DataFile, Number]

DataWord = "NULL";

While[
  DataWord != "=" ,
  DataWord = Read[DataFile, Word];
  ]

IterationsPerSecond = Read[DataFile, Number]

DataWord = "NULL";

While[
  DataWord != "=" ,
  DataWord = Read[DataFile, Word];
  ]

NumVehicles = Read[DataFile, Number]

While[
  DataWord != "Time",
  Skip[DataFile, Record];
  DataWord = Read[DataFile, Word];
  ]

Skip[DataFile, Record]

OtherVehiclesPlot =
    Table[Read[DataFile, Number], {NumOfDataLines,
        NumVehicles - 1}, {NumOfDataColumns, 10}];

TableForm[OtherVehiclesPlot]



D-3

Do[
  OtherVehiclesPlot[[i]] = Append[OtherVehiclesPlot[[i]], 0],
  {i, NumVehicles - 1}
  ]

Table[Dimensions[OtherVehiclesPlot]]

TableForm[OtherVehiclesPlot]

While[
  DataWord != "Dir",
  DataWord = Read[DataFile, Word];
  ]

Skip[DataFile, Record]

VehiclePlot =
    Table[
      Read[DataFile, Number], {NumOfDataLines,
        TotalIterations + 1}, {NumOfDataColumns, 13}];
RowsColumns = Table[Dimensions[VehiclePlot]];

Close[DataFile]

RowsColumns

Do[
  VehiclePlot[[i]] = Append[VehiclePlot[[i]], 0],
  {i, TotalIterations + 1}
  ]

TableForm[VehiclePlot]

(*
  Get Graphics packages needed for plots
  *)

<< Graphics`Graphics3D`

<< Graphics`Arrow`

(* << Graphics`Polyhedra` *)

<< Graphics`Animation`

SignalMax = 200

Signal[x_, y_] := (signal = (4045.8092*(1./(x*x + y*y + 0.0001)) + 49.1908);
    If[signal > SignalMax, SignalMax, signal] )

signalTable = Table[{x, y, Signal[x, y]}, {x, -50, 50, 2}, {y, -50, 50, 2}];

signalPlot =
  ListSurfacePlot3D[signalTable, PlotRange -> {0, 200}, Axes -> True,
    ColorFunction -> Hue, ImageSize -> 500,
    BoxRatios -> {1.1, 1.1, 1} (* DisplayFunction -> Identity*)]



D-4

signalContour =
  ContourPlot[Signal[x, y], {x, -50, 50}, {y, -50, 50}, PlotPoints -> 25,
    ColorFunction -> GrayLevel, ContourLines -> True, Contours -> 10,
    ContourShading -> False, ImageSize -> 500]

Clear[signalShadow]

signalShadow =
    ShadowPlot3D[Signal[x, y] - 77, {x, -50, 50}, {y, -50, 50},
      PlotPoints -> 40, ShadowMesh -> False, Axes -> True,
      AxesLabel -> {X, Y, Signal},  ImageSize -> 600, ShadowPosition -> 1,
      SurfaceMesh -> True, ViewPoint -> {1.464, -2.702, 1.417}
      ];

(*
  SpinShow[signalShadow, Frames -> 30, ViewPoint -> {1.464, -2.702, 1.417},
    SpinTilt -> {0, 0}, SpinDistance -> 5, Axes -> False, ImageSize -> 600
    ]
  *)

(*
  plotTet = Polyhedron[Tetrahedron, {0, 0, SignalMax}, 2, Boxed -> True,
       ImageSize -> 400,
      PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50, SignalMax + 50}},
      Axes -> True, FaceGrids -> {{0, 0, -1}}
      ]
  *)

Clear[plot00, plot01, plot10, plot11, plot421, plot521]

(* Initial Bug Location *)

plot00 =
  ScatterPlot3D[
    {
      {
        VehiclePlot[[1, 12]],
        VehiclePlot[[1, 13]],
        VehiclePlot[[1, 14]] +
          Signal[VehiclePlot[[1, 12]], VehiclePlot[[1, 13]]] - 72
        },
      {
        VehiclePlot[[1, 12]],
        VehiclePlot[[1, 13]],
        VehiclePlot[[1, 14]] +
          Signal[VehiclePlot[[1, 12]], VehiclePlot[[1, 13]]] - 72
        }
      },
    PlotRange -> {{-50, 50}, {-50, 50}, {-50, +50}},
    PlotStyle -> {GrayLevel[0.], PointSize[0.02], Thickness[0.005]} ,
    DisplayFunction -> Identity
    ]

plot01 =



D-5

  ScatterPlot3D[
    {
      {VehiclePlot[[1, 12]],
        VehiclePlot[[1, 13]],
        VehiclePlot[[1, 14]] + SignalMax
        },
      {
        VehiclePlot[[1, 12]],
        VehiclePlot[[1, 13]],
        VehiclePlot[[1, 14]] + SignalMax}
      },
    PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50, SignalMax + 50}},
    PlotStyle -> {GrayLevel[0.], PointSize[0.02], Thickness[0.005]} ,
    DisplayFunction -> Identity
    ]

(* Other Bug Locations *)

plot10 = ScatterPlot3D[
    Table[
      {
        OtherVehiclesPlot[[i, 9]],
        OtherVehiclesPlot[[i, 10]],
        OtherVehiclesPlot[[i, 11]] +
          Signal[OtherVehiclesPlot[[i, 9]], OtherVehiclesPlot[[i, 10]]] - 72
        },
      {i, NumVehicles - 1}
      ] ,
     PlotStyle -> {Hue[0.6], PointSize[0.02]}, PlotJoined -> False,
    PlotRange -> {{-50, 50}, {-50, 50}, {-50, 50}},
    DisplayFunction -> Identity
    ]

plot11 = ScatterPlot3D[
    Table[{
        OtherVehiclesPlot[[i, 9]],
        OtherVehiclesPlot[[i, 10]],
        OtherVehiclesPlot[[i, 11]] + SignalMax
        },
      {i, NumVehicles - 1}
      ] ,
    PlotStyle -> {Hue[0.6], PointSize[0.02]}, PlotJoined -> False,
    PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50, SignalMax + 50}},
    DisplayFunction -> Identity
    ]

plot421 = ScatterPlot3D[
    {
      {
        VehiclePlot[[1, 12]],
        VehiclePlot[[1, 13]],
        VehiclePlot[[1, 14]] + SignalMax
        },
      {
        OtherVehiclesPlot[[1, 9]],
        OtherVehiclesPlot[[1, 10]],



D-6

        OtherVehiclesPlot[[1, 11]] + SignalMax
        }
      },
    PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50, SignalMax + 50}},
    PlotJoined -> True,
    PlotStyle -> {GrayLevel[0.], PointSize[0.02], Thickness[0.005],
        Dashing[{0.002, 0.008, 0.002, 0.008}]} , DisplayFunction -> Identity
    ]

plot521 = ScatterPlot3D[
    {
      {
        VehiclePlot[[1, 12]],
        VehiclePlot[[1, 13]],
        VehiclePlot[[1, 14]] + SignalMax
        },
      {
        OtherVehiclesPlot[[4, 9]],
        OtherVehiclesPlot[[4, 10]],
        OtherVehiclesPlot[[4, 11]] + SignalMax
        }
      },
    PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50, SignalMax + 50}},
    PlotJoined -> True,
    PlotStyle -> {GrayLevel[0.], PointSize[0.02], Thickness[0.005],
        Dashing[{0.01, 0.01}]} , DisplayFunction -> Identity
    ]

signalSpin =
  Show[signalShadow, plot00, plot01, plot10, plot11, plot421, plot521,
    DisplayFunction -> $DisplayFunction, ViewPoint -> {1.384, -2.555, 1.734},
    ImageSize -> 600,
    PlotLabel -> StyleForm[  "Initial Conditions", "Section"]]

SpinShow[signalSpin, Frames -> 30, ViewPoint -> {1.384, -2.555, 1.734},
  SpinTilt -> {0, 0}, SpinDistance -> 5, Axes -> False, ImageSize -> 600
  ]

Clear[plot100, plot101, plot200, plot300, plot301, plot400, plot401]

gr = Do[
    (
      plot100 = ScatterPlot3D[
          Table[{
              VehiclePlot[[i, 12]],
              VehiclePlot[[i, 13]],
              VehiclePlot[[i, 14]] + SignalMax
               },
            {i, j, j}] ,
          PlotJoined -> False,
          PlotStyle -> { PointSize[0.02], Thickness[0.005], Hue[0.6]},
          PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50,
                SignalMax + 50}} , DisplayFunction -> Identity
          ];



D-7

      plot101 = ScatterPlot3D[
          Table[{
              VehiclePlot[[i, 12]],
              VehiclePlot[[i, 13]],

              VehiclePlot[[i, 14]] +
                Signal[VehiclePlot[[i, 12]], VehiclePlot[[i, 13]]] - 72
               },
            {i, j, j}] ,
          PlotJoined -> False,
          PlotStyle -> { PointSize[0.02], Thickness[0.005], Hue[0.6]},
          PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50,
                SignalMax + 50}} , DisplayFunction -> Identity
          ];

      plot300 = ScatterPlot3D[
          Table[{
              VehiclePlot[[i, 12]],
              VehiclePlot[[i, 13]],
              VehiclePlot[[i, 14]] + SignalMax
               },
            {i, j}],
          PlotJoined -> True,
          PlotStyle -> { PointSize[0.5], Thickness[0.008], Hue[0.17]},
          PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50,
                SignalMax + 50}}, DisplayFunction -> Identity
          ];

      plot301 = ScatterPlot3D[
          Table[{
              VehiclePlot[[i, 12]],
              VehiclePlot[[i, 13]],

              VehiclePlot[[i, 14]] +
                Signal[VehiclePlot[[i, 12]], VehiclePlot[[i, 13]] ] - 72
              },
            {i, j}] ,
          PlotJoined -> True,
          PlotStyle -> { PointSize[0.5], Thickness[0.008], Hue[0.17]},
          PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50,
                SignalMax + 50}} , DisplayFunction -> Identity
          ];

      (* Show nearest neighbors with connecting lines *)

      For[k = 1, k < NumVehicles, k++,
        If [
          VehiclePlot[[j, 2]] == OtherVehiclesPlot[[k, 2]],
          plot400 = ScatterPlot3D[
              {
                {
                  VehiclePlot[[j, 12]],
                  VehiclePlot[[j, 13]],
                  VehiclePlot[[j, 14]] + SignalMax
                  },



D-8

                {
                  OtherVehiclesPlot[[k, 9]],
                  OtherVehiclesPlot[[k, 10]],
                  OtherVehiclesPlot[[k, 11]] + SignalMax
                  }
                },

              PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50,
                    SignalMax + 50}}, PlotJoined -> True,

              PlotStyle -> {GrayLevel[0.], PointSize[0.02], Thickness[0.005],
                  Dashing[{0.002, 0.008, 0.002, 0.008}]} ,
              DisplayFunction -> Identity
              ]
          ];

        If [
          VehiclePlot[[j, 3]] == OtherVehiclesPlot[[k, 2]],
          plot401 = ScatterPlot3D[
              {
                {
                  VehiclePlot[[j, 12]],
                  VehiclePlot[[j, 13]],
                  VehiclePlot[[j, 14]] + SignalMax
                  },
                {
                  OtherVehiclesPlot[[k, 9]],
                  OtherVehiclesPlot[[k, 10]],
                  OtherVehiclesPlot[[k, 11]] + SignalMax
                  }
                },

              PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax - 50,
                    SignalMax + 50}}, PlotJoined -> True,

              PlotStyle -> {GrayLevel[0.], PointSize[0.02], Thickness[0.005],
                  Dashing[{0.01, 0.01}]} , DisplayFunction -> Identity
              ]
          ];
        ];

      Show[
        signalShadow, plot00, plot01, plot10, plot11, plot100, plot101,
        plot300, plot301, plot400, plot401,
        DisplayFunction -> $DisplayFunction,
        ViewPoint -> {1.433, -2.646, 1.548},
        PlotLabel ->
          StyleForm[  N[j/IterationsPerSecond]  " seconds", "Section"],
        ImageSize -> 600
        ]

      ),
    {j, RowsColumns[[1]]}
    ]

(* The End *)



27

4 Santa Fe Institute
Attn:  Melanie Mitchell (2 copies)
          James Crutchfield (2 copies)
1399 Hyde Park Road
Santa Fe, New Mexico 87501

EXTERNAL DISTRIBUTION:

Copies:          Name/Entity:



28

1 1002 P. Eicker, 15200

1 1003 R. Robinett, 15211
5 1003 J. Hurtado, 15211
1 1003 J. Feddema, 15211
1 1003 C. Lewis, 15211
1 1004 D. Schoenwald, 15221
1 1010 G. R. Eisler, 15222
1 0839 G. Yonas, 16000

1 9018 Central Technical
Files, 8945-1

2 0899 Technical Library,
9616

1 0612 Review & Approval
Desk, 9612
For DOE/OSTI

1 0316 S. S. Dosanjh, 9233
1 0318 G. S. Davidson, 9212
5 0318 R. J. Pryor, 9212
1 0318 M. Boslough, 9212
1 0318 K. Boyack, 9212
1 0318 R. Hightower, 9212
1 0825 W. H. Rutledge, 9115
1 0321 W. J. Camp, 9200
10 0316 D. W. Barnette, 9233
1 1110 D. E. Womble, 9214
1 0321 A. L. Hale, 9220
1 0316 G. S. Heffelfinger, 9235
1 0847 R. W. Leland, 9226
1 0819 E. Boucheron, 9231
1 0310 P. Yarrington, 9230
1 0847 D. R. Martinez, 9124

INTERNAL DISTRIBUTION:

                    Mail
Copies:        Stop:           Name/Org:


	ABSTRACT
	Acknowledgments
	Contents
	Introduction
	The Genetic Algorithm
	Program Representation of the Genetic Algorithm
	Problem Setup
	Signal Source Models
	Results
	A. Simulation: Genetic Algorithm for Non-Noisy Signal Sources
	B. Field Test: Coupling the Genetic Algorithm with Sandia’s RATLERs
	C. Simulation: Non-Noisy Genetic Algorithm Applied to Noisy Signals
	D. Simulation: Genetic Algorithm for Noisy Signal Sources

	Summary and Conclusions
	References
	Appendix A CEDAR Pseudo-Code Program Listing
	Appendix B ROBOCOP.C Program Listing (as run for Model 0)
	Appendix C ROBOCOP.C Sample Output Listing for Model 0
	Appendix D Mathematica 4.0 Graphics Program Listing (as used for Model 0)
	DISTRIBUTION

