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ABSTRACT 

Object-oriented programming is becoming a popular way of developing new software. 
The promise of this new programming paradigm is that software developed through these 
concepts will be more reliable and easier to re-use, thereby decreasing the time and cost of the 
software development cycle. This report describes the development of a C++ class library 
for nonlinear optimization. Using object-oriented techniques, this new library was designed 
so that the interface is easy to use while being general enough so that new optimization 
algorithms can be added easily to the existing framework. 



Contents 

Introduction 

Object-Oriented Programming 
2.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.4 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Optimization Classes 
3.1 Nonlinear Problem Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 Optimization Method Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 

Example Code 

Summary 

7 

10 
11 
12 

14 

16 



1. Introduction 

Object-oriented programming (OOP) is becoming a popular way of developing new soft- 
ware. Unlike procedural programming, which emphasizes the development of algorithms 
to accomplish a specific task, object-oriented programming relies on the implementation of 
new data types called objects. The promise behind this programming paradigm is that 
software developed through these concepts will be more reliable and easier to re-use in new 
applications, thereby decreasing the time and cost of the software development cycle. 

The main concept behind object-oriented programming is called data abstraction, which 
is the separation of the data and the procedures for manipulating that data from an applica- 
tion program. In many ways this is no different than good programming practices that try to 
keep the unnecessary details of a particular code from an end-user. The major difference in 
object-oriented programming is the ability to create user-defined data types and add them to 
an existing language thereby facilitating data abstraction. It is these new objects that give 
object-oriented programming its name. Through these new objects a computer language can 
be easily extended to handle new applications. A good example of this feature is the matrix 
package developed by Davies ([4]). With this package, a user can define vectors and matrices 
as part of the language as well as use the standard operations defined for these objects, such 
as matrix addition, matrix multiplication, and inversion. 

Another important trend is the renewed interest in nonlinear optimization. Optimization 
has always occupied a major role in industries: such as the airline industry, where scheduling 
problems are important. Recently, however, optimization has taken on an increasingly im- 
portant role in areas such as advanced manufacturing where rapid design and prototyping of 
new processes and devices is essential. This trend is partly due to increased computer power 
available to users that allows for the repeated computer simulation of manufacturing pro- 
cesses and devices. While in the past the design process involved a large amount of human 
interaction, it is now becoming feasible to au:omate the design process using optimization 
tools. This trend in increased computer power has also had an effect within the optimization 
community where there has been an increased interest in large-scale nonlinear optimization 
problems [I]. 

Because of the wide variety of applications and the riced to take advantage of any special 
structure in a problem, many software packages have been developed to address various types 
of optimization problems. For an excellent overview of the available optimization software 
see for example [7]. Unfortunately, the large number of optimization codes available makes 
choosing a good algorithm for a particular problem difficult. This is especially true for the 
novice practitioner of optimization. In addition, even if the methods are inherently similar, 
the interface to the codes can be quite different making it difficult to experiment with various 
methods. To resolve some of these issues code designers usually resort to one df two tricks: 
1) force the user to use a particular calling sequence or 2) the optimization codes are written 
using reverse communication. Neither solution is very satisfying for the reasons explained 
below. 

If the optimization algorithm requires a particular calling sequence the user is forced into 
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writing a subroutine that will interface between the optimizer and the function evaluator. 
While this is usually a straightforward task it may prove to  be unwieldy and costly in certain 
situations. In particular, we would like to focus on cases where the function evaluator is 
described by the output of a simulation such as a finite-element analysis. In this case, the 
prescribed interface may not be general enough to  encompass all of the parameters required 
to do a simulation or it may require the user to  package any extra information in a pre-defined 
packed format. 

The second option that  is frequently used is called reverse communication. In this case, 
the optimization algorithm returns to  the calling routine whenever it needs information to 
proceed. This information may be a function value, a derivative, or any other data  that is 
required by the optimization algorithm. From the point, of view of the user this is a better 
solution in that it requires less coding. From the point of view of the software developer 
however, the job is more dificult. Outside of the fact that  this type of coding violates several 
good programming practices (for example, single entry-single exit codes), the code is also 
more difficult to debug. Another disadvantage is that  software using reverse communication 
will be slightly more inefficient due to  the frequent calling of and returning from subroutines 
that could involve several layers of subroutines. 

The goal of this work is to use the ideas of object-oriented programming to  overcome 
these obstacles. In particular we hope to  address the following issues: 

0 better program interfaces for the user of optimization codes 
0 rapid evaluation of several optimization codes for a given problem 
0 rapid development of new optimization algorithms 
0 more re-usability of optimization codes 

The rest of this paper is organized as follows. In Section 2 we introduce some concepts 
from object-oriented programming that  will be useful for our discussion of the optimization 
classes. The reader who is familiar with object-oriented programming techniques can safely 
skip this section. Section 3 describes a C++ implementation of a n  object-oriented class 
library for unconstrained optimization. In  Section 4 we give an example of using a particular 
class for solving a simple test problem. We conclude in Section 5 with a discussion of future 
work. 

2. 0 bject- Orient ed Programming 

There are four main ideas that  we will use from object-oriented programming: 

0 abstraction 
0 classes and objects 
0 inheritance 
0 polymorphism 

This report does not seek to  give a full description of object-oriented programming, hut 
merely to  provide enough background material to  discuss the new optimization classes. For 
a fuller description of object-oriented programming see [2, 3, 5 ,  lo]. 



2.1. Abstraction 

The idea of abstraction in software design is an old one. In its most general form, 
abstraction means the ability to isolate information pertaining to a particular software design. 
In procedural programming for example, the idea of abstraction has led to  the concept of 
modular programming. In object-oriented programming this idea is taken further through 
the introduction of abstract da ta  types. For the purposes of this paper we will define an 
abs2rac2 data type as a user-defined extension to an existing language type. It will usually 
consist of a set of da ta  structures and a collection of operations that can manipulate those 
data  structures. Through the use of abstraction, code will hopefully be more robust since 
details of data  structures and the algorithms that manipulate them are isolated from the 
user. 

2.2. Classes  

The  next concept that  is useful is that  of a class. A class is a user-defined data  type 
that allows for da ta  hiding. A class typically consists of both a da ta  structure and a group 
of subroutines that can manipulate these data  structures. The  da ta  inside the structure is 
hidden from the user in that  the only way to  access it is through the subroutines defined 
as part of the class. In this manner, the user does not need to know about the particular 
implementation of the class but can concentrate on the use of it. An object is then just a 
particular instance of a class. The  analogy in a procedural language is that  of a variable 
being a particular instance of a pre-defined type such as an integer. 

An overworked but simple example is that  of a complex data  type. In this example, we 
could define a class called c o m p l e x  that consists of a pair of existing language types, for 
example, two floats.  A better example is that  of a class called Vector that could be defined 
as an array of floats together with an int that defines the size of the vector. The  difference 
between the class Vector and an array which already exists in most languages is that  we 
can now define operations that can be used with these objects. Thus we could define vector 
addition using the standard "+" operator between two Vectors of the same size. 

2.3. I n h e r i t a n c e  

Inheritance allows for easy extension of capabilities and is perhaps the most important 
new concept after that  of the class. The  idea behind inheritance is that  a new class can 
be defined using a previously defined class as a template. In the terminology of OOP the 
template is called the base class and the new class is derived from the base class by adding 
new features to it. 

One of the advantages of inheritance is that  all of the algorithms defined as part of the 
old class are still valid for the new class. This results in more reusable code since it is not 
necessary to  rewrite this portion of the algorithm for the derived classes. 

2.4. P o l y m o r p h i s m  

The last concept we will discuss is called polymorphism. In C++, it is possible to  have a 
pointer to a function that will perform different actions depending on what class it belongs 
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to. In this way, it is possible to defer an a.lgorithmic design decision until it is required. In 
the OOP terminology, these functions are called virtual functions. If a class contains virtual 
functions then it is called an abstract class. The reason for this distinction is that  an abstract 
class can never be used to  create an object, it  can only be used as a base class for other 
derived classes. 

3. Optimization Classes 

There have been several attempts at designing optimization classes. In [9] Schoenberg 
developed a set of classes for the unconstrained optimization of arbitrary functions. Schoen- 
berg describes 3 classes that  together choose a particular algorithm, set the tolerances, and 
perform the actual optimization. Nichols et  al. [SI have also developed optimization classes 
for linear operators in the physical sciences and specifically for linear operators arising from 
geophysical inversion problems. 

We will take a slightly different approach by making a distinction between nonlinear 
problems and the methods used to solve these problems. The  rationale for this decision is 
that users seldom are aware of the intricacies of the various methods nor should they need to  
become experts in numerical analysis. On the other extreme, the developer of optimization 
algorithms usually does not care about the details of how a problem is defined other than to  
know certain mathematical properties and some general problem characteristics. By making 
a distinction between problems and methods we can develop codes that  will hopefully be 
used by both groups without having to  rewrite the class libraries every t ime a new problem 
is presented or a new algorithm is developed. 

We will write the general nonlinear optimization problem as follows: 

min f ( x )  
x E  R" 

subject to  h ; ( z )  = 0, 

g;(z) 2 0, 
In this problem, the objective function f(x) and the constraint functions hi(z) and g;(z) 
are assumed to  be general nonlinear functions. In this report, we will limit our scope to 
consider only the unconstrained optimization problem. The  question of whether classes 
for unconstrained optimization problems should be subclasses of the general optimization 
problem is rather tricky and we will delay the discussion of this issue until the last section. 

The  end-users of optimization algorithms are usually quite knowledgeable about the 
problems they are trying to  solve. However, this information usually pertains to  the physical 
problem or to the algorithmic details of the computer model. For instance, the user will 
know the dimension of the problem, whether analytic first or second derivatives are available, 
and a general idea about the cost of a function evaluation. The  developer of optimization 
algorithms on the other hand, would usually like to  know more about the mathematical 
properties of the problem as well as any special structure tha t  might be exploited. For 
example, a developer might ask any or all of the following questions: 

0 How smooth is the function? Is the function Co, C',  C2, etc.? 

i = 1,. . . , p ,  
i = 1,. . . ,m. 
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0 Does the objective function have any special properties, for example, is it a linear 
function, a quadratic function, etc.? 

0 Is this a large dimensional problem? 
e Is there any other special structure to the problem? For example, is this a partially 

0 How many digits of accuracy does the objective function have? How many digits of 

0 Is the Hessian matrix sparse or dense? 
0 Is the objective function expensive to  compute? 

separable problem? 

accuracy does the derivative function have? 

To consider the first property only, available optimization algorithms could be classified 
according to the amount of smoothness assumed in the objective function. For example, if 
the function is C2 (twice continuously differentiable), then one could use a Newton method. 
However, if the function is only continuous, then one would probably use a direct-search 
method. For most users it may be difficult to  prove how much continuity the objective 
function has and therefore they may not be able to pick the most appropriate method. 
What is more likely is that a user will use the first available optimization software or the 
easiest one to use among several, usually with mixed results. 

It seems appropriate then to define nonlinear problems from the point of view of the user. 
On the other hand, optimization method classes should be defined from the point of view of 
the developer, as there is a great deal of similarity between various algorithms. In the rest 
of this section, we propose such a division and discuss a set of C++ classes for each one of 
these two cases. 

3.1. Nonlinear Problem Classes 

One of the first questions that arises is the degree of continuity in the objective function. 
This information may not be readily available, but what is clear is the availability of ana- 
lytic derivatives. As such we’ve chosen to classify nonlinear programming problems by the 
availability of functions for computing the derivatives: 

NLPO - No derivative information available 
NLPl - Analytic first derivatives available 
NLP2 - Analytic first and second derivatives available 

In  Figure 1, we present one implementation of a nonlinear problem class. The  first class 
we define is called NLPO for NonLinear Problem Co. This class contains information common 
to  all problems including: 1) the problem dimension, 2) a current point, 3) a function value, 
and 4) a function to evaluate the objective function. 

The  class NLPl is derived from the base class NLPO by adding a member for the gradient 
and a function to  evaluate the gradient. Likewise, the class NLP2 is derived from NLPl by 
adding the necessary information to  compute and store the Hessian. By using inheritance 
wc have been able to take advantage of the code that  is already written a t  the lower levels. 
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NLP2 

SymmetricMatrix Hessian 
EvalHO 
NLP1. 

ColumnVector Grad 
EvalG() 

NLPO 

int dim 
ColumnVector xc 
void 'Data 
double fvalue 
double EvalF() 
virtual void Eva10 

Figure 1: Nonlinear problem classes 

It is not intended that  thesc base classes cover evcry nonlinear problem, but starting 
with thcsc classes the user can build new classes that contain the specific details of the real 
problem. Since the optimization method classes dcscribcd below will use the base classes, 
thc optimization algorithms will still work with the new user classes without having to be 
rcwri tten. 

In our implementation of the optimization classes, we have defined the functions that 
cvaluate the objective function, gradient, and Hessian as virtual functions. As we mentioned 
in the previous section, this means that the NLPX classes (where X can stand for 0, 1, or 
2) are abstract classes and can only be used as base classes for other classes. This allows us 
to defer the definition of how the function, gradient, and Hessian are actually computed so 
that users can create their own definitions. In essence, the base classes contain placeholders 
for the codes that  will be  called to  compute the objective function. 

As part of our implementation we also provide 3 classes derived from NLPX called NLFX 
that have a particular calling sequence to  the required functions. These classes can be used to  
solve some simple optimization problems or can be used as templates for more sophisticated 
objective functions. In Section 4, we will give some cxamplcs using the NLFX classes to  
demonstrate some of the fcatures of our class libraries. 

3.2. Optimization Method Classes 

There are many classifications possible for optimization algorithms, but most well-known 
methods can be grouped into one of threc classes: 
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I OPTIMIZE I 

Direct CG-Like Newton-Li ke 

FD Newton Quasi- 
PDS CG LBFGS Newton Newton 

Figure 2: Optimization method hierarchy 

0 Direct Search methods 
0 Conjugate gradient like methods 
0 Newton like methods 

For example, methods such as the Nelder-Mead simplex method, the box method, and the 
parallel direct search method fall into the direct search class. The nonlinear conjugate 
gradient method and limited memory BFGS methods fall into the Conjugate Gradient class. 
Finally the Newton class, could include methods such as finite-difference Newton, quasi- 
Newton methods, and inexact Newton methods. A simple taxonomy for some popular 
algorithms is given in Figure 2 as an example. 

Based on this classification, we have implemented C++ classes for 4 different methods: 
1) a Newton method, 2) a finite-difference Newton method, 3) a Quasi-Newton method, and 
4) a nonlinear conjugate gradient method. In Figure 3, we present the class hierarchy for 
two of the implemented methods. The base class, called Optimize consists of information 
that is required by all optimization classes. We note that once again we have used the 
concept of polymorphism through the use of the virtual function optimize(). This function 
is intended to  be a placeholder for the actual function that will do the optimization. Since 
each method class will have its own algorithm for computing the minimum of a function, it 
is not necessary to  define it in the base class. However, it is important to  define the interface 
a t  t,his point since it is common to  all of the derived classes. 

The next next two classes OptQNewtonLike and OptCGLike are derived from the 
Optimize class. The  major difference between these two classes is that  the Newton-like 
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Optimize 

ColumnVector gprev 

virtual void CheckConvg() 

ColumnVector gprev 
SymmetricMatrix Hessian int grad-evals 
int grad-evals virtual void optimize() virtual void optimize() 
virtual void CheckConvg() 

I 

OptQNewton 

NLPl 'nlp 
void optimize() 
int CheckConvg() 

OptCG 

NLPl 'nlp 
void optimize() 
int CheckConvg() 

Figure 3: Optimization method classes 

classes require extra storage for the Hessian matrix. Finally, the last two classes OptQNew- 
ton and OptCG constitute the actual optimization mcthods. I t  is thesc two  classcs that 
define the optimization algorithms specific to  each method. In the case of the OptQNew- 
ton class, the algorithm consists of a Quasi-Newton method with a BFGS update forrriula 
for the Hessian. The OptCG class implements a nonlinear conjugate gradient method. 

As an  example of the re-usability of object-oriented codes, all of the linear algebra is 
haridlcd through the usc of thc matrix package developed by Davies [4], with some minor 
enhancements for thc matriccs that arise in the optimization algorithms. In addition, all of 
the optimization methods use the same line search, which is based on the algorithm by More 
and Thucnte [6]. 

4. Example Code 

To illustrate some of the concepts, we now present an example that  solves a small non- 
linear optimization problem using the optimization classes. The test problem consists of 
Rosenbrock's function, 

min 1 0 0 ( 2 2  - + ( 1  -  XI)^, 
X 

with an initial guess of (-1.2, 1.0). In this example, we will assume that  first derivatives are 
available but that  second derivatives are not available. We will use a quasi-Newton method 
that employs a BFGS update formula for the Hessian. 
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1 #include "opt. h" 
2 void rosen(int mode, i n t  n ,  ColumnVector x,  double& fx, ColumnVector& g); 
3 
1 main ( )  
j{ 
6 
7 
S 
9 

10 
11 
12 
13 
14 
15 
16 
17 
1s  
19 
20 
21 
22 
23 
24 
25 
26 
27 
2s 1 

in t  n = 2; 
ColumnVector x(n) ,  g(n); 

USERFCNl tstf = &rosen; // Define the test junction 

NLFl nlp(n,tstf); // Define the Nonlinear problem 

x(1) = -1.2; 
x(2) = 1.0; 
nlp. SetX (x); 
nlp. Eva1 ( ) ; 

TOLS to]; // Create a "Tolerances" object and 
tol.Set DefaultTolO; // set the tolerances 
tol. Set F to1 ( 1 .e-9) ; 
tol.SetMaxTter( 100); 

O p t Q N e w t o n  objfcn(&nlp,&tol); // Build a Quasi-Newton object and optimize 

ob j fcn .opt imize() ; 

nlp.PrintState("Solution from quasi-newton"); 

// Evaluate the function al x 

Figure 4: Example code for solving Rosenbrock's function 

15 



Figure 4 displays the source listing for the sarnple problem. There are three major 
sections in the example code: 1) the problem definition, 2) the tolerance definition, and 3) 
the method definition. Since only first derivatives are available, we first create an object of 
type NLFl on line 11. The  two components needed to  specify this object are the dimension 
of the problem and a pointer to a function. The next step is to  set the initial guess for this 
problem. Here we are using two of the member functions for NLFl to  access the data  in 
the class and t o  evaluate the function a t  the current point. 

The  next step is t o  create a TOLS object on lines 18-21 that  contains the tolerances 
that will be used in the optimization method. In fact, the optimization method object can 
be created without a specific reference to  a TOLS object but if the user wishes to  change 
any of the default tolerances it is necessary to create the TOLS object. 

The last step consists of creating an optimization method object from the OptQNewton 
class using the NLFl and TOLS objects. We then call the member function optimize on 
line 25 to do the actual optimization. Finally the solution is printed using the Printstate 
riiember function. 

We note that if the  user would now like to  try a different Optimization method, the 
procedure would consist of replacing line 23 with the creation of a different type of object, 
for example an OptCG object to try the nonlinear conjugate gradient method. 

5 .  Summary 

In this report, we have presented a C++ class library for nonlinear unconstrained opti- 
mization. We have proposed that a clear distinction be made between nonlinear problems 
and optimization methods. Based on this distinction, we have implemented a set of object- 
oriented classes specifically suited to each case. In this way, we have been able t o  develop a 
set of classes that, address the important issues for both the users and the developers of op- 
timization algorithms. From the point of view of a user requiring an optimization algorithm 
to solve a particular problem, these libraries have been written so that they are easily used. 
From the point of view of someone developing optimization algorithms, these classes have 
becri designed so that  new algorithms can be easily incorporated into the existing framework. 

We currently have four methods implemented: 1) a Newton method, 2) a finite-difference 
Kewton method, 3) a Quasi-Newton method, and 4) a nonlinear conjugate gradient method. 
Future work will concentrate on incorporating new algorithms. In particular, we are cur- 
rently working on developing new algorithms based on pattern search methods for the case 
of noisy optimization. We are also working on implementing new classes for large-scale op- 
timization. Since most of the popular methods for large-scale optimization use variations of 
one of the methods already implemented, the extension to  large-scale problems should be 
straightforward. 

Another area we will address concerns the case of constrained optimization problems. The  
question we wish to address is whether the constrained optimization case is a sub-class of the 
unconstrained optimization case or is a Constrained optimization problern an  unconstrained 
problem that happens to  have constraints. In the OOP terminology, this is the “is-a” versus 
a “has-a” question, which has implications in the implementation of new classes. 
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Finally, we note that the libraries presented in this article should not be considered as 
a finished product. The  true test will be the usefulness of these class libraries for solving 
real-world applications. Towards this end, we are also developing a suite of test problems 
from various manufacturing design problems using the nonlinear problem classes developed 
here. 
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