
SANDIA REPORT
SAND85–2346 ● UC–32

Unlimited Release
Reprinted October 1992

Sandia Software Guidelines
Volume 3
Standards, Practices, and
Conventions

Prenared bv

Sandia Nat~onal Laboratories
Albuquerque, New Mexico 87185 and Livermore. California 94550

SF2900Q(8-81)

.—.

w

.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO BOX 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy A06
Microfiche copy: AO1

n

Distribution

Category UC-32

SAIND85-2346
Unlimited Release

Printed July 1986

Reprinted October 1992

.

.

Sandia Software Guidelines
Volume 3

Standards, Practices, and Conventions

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

.

This volume is one in a series of Sandia Software Guidelines intended for use in

producing quality software within Sandia National Laboratories. In consonance

with the IEEE Standard for Software Quality Assurance Plans, this volume ident i-

fies software standards, conventions, and practices. These guidelines are the result

of a collective effort within Sandia National Laboratories to define recommended

deliverables and to document standards, practices, and conventions which will help

ensure quality software.

Foreword

This volume is one in a series of Sandia Software Guidelines intended

for use in producing quality software within Sandia National Laboratories.

These guidelines, when used in conjunction with the IEEE Standard for Soft-

ware Quality Assurance Plans, will help ensure that computer programs de-

veloped within the Laboratories are usable, reliable, understandable, main-

tainable, and portable. When complete, the series will consist of the follow-

ing documents:

● Volume 1: Software Quality (SAN D85-2344)

Presents an overview of procedures designed to ensure software quality.

Includes a sample software quality assurance plan for a generic Sandia

project.

● Volume 2: Documentation (SAND85-2345)

Presents a description of documents needed for developing and main-

taining software projects. Includes sample document outlines for a

generic Sandia software project.

● Volume 3: Standards, practices, and Conventions

(SAND85-2346)

Presents consensus standards and practices for developing and main-

taining quality software at Sandia. Includes recommended deliverables

for major phases of the software life cycle.

● Volume 4: Configuration Management (SAN D85-2347)

Presents a methodology for configuration management of Sandia soft-

ware projects and their associated documentation.

● Volume 5: Tools, Techniques, and Methodologies

(SAND85-2348)

Presents evaluations and a directory of software tools and methodolo-

gies available to Sandia personnel.

/---

Acknowledgement

A consensus document like this volume of the guidelines cannot be

produced without the cooperation and hard work of a great many peo-

ple throughout the organization. The sponsoring CAD Technology Division

wishes to thank the members of the working group who wrote Volume 3, as

well as the members of the balloting group who reviewed and refined it.

Working Group Preface

We have been proud to participate as members of the Working Group

that has produced this document. We all believe that the ideas and prac-

tices documented herein are important and deserve your attention. Like all

converts to a new way of thinking, our past and even present actions are

not necessarily in line with the ideal. Few of us have had the opportunity to

apply all of these practices to a complete project. We believe the practices

we have personally used have helped to produce a higher quality software

product.

Working Group Members, Volume 3

Mike Blackledge, Chairperson Mike McGlaun (6444)

Doug Adams (7262) Darl Patrick (7252)

Art Ahr (2826) Don Rountree (5321)

Sandra Babb (2854) Suzanne Rountree (2813)

Louann Grady (2812) John Wisniewski (2113)

Dick Isler (8274) Ann Yates (5255)

T/LiH ,Lwum tcn.t W,LS Imznt(d usin.!] th<&T@’ <<,m,,ut(rt,,,,..ttin,,,WWT<LV{
(’n /1 t},, .S<m,li,’ N,, tz,,,,,,d I,,t/),)r, d(,rt< s Aut~Il,wi<AI’.< 5 ph{)t(,ff,rw.(t,t,r.

ii

Contents

.

1

,2

3

4

Introduction

l.l Intent .

l.2 Environment .

1.3 Applicability .

1.4 Organization .

1.5 How toUseThisManual

1.6 Summary .

Project Planning and Management

2.1 Recommended Deliverable

2.2 Why Project Planning?..

2.3 Project Plan .

2.4 Project Management .

2.5 Tools, Techniques, and Methodologies

Requirements

3.1 Recommended Deliverables

3.2 Why Requirements? .

3.3 Software Requirements Specification

3.4 Software Requirements Review

3.5 Prototypes .

3.6 Tools, Techniques, and Methodologies

Design

4.1 Recommended Deliverables

4.2 Why Design? .

4.3 Software Design Criteria .

4.4 General Design Standards and Guides

4.5 Detailed Design Procedure .

4.6 Design Description Documents

4.6.1 Preliminary Design Document

4.6.2 Detailed Design Document

4.7 Design Reviews .

4.7.1 Criteria for Design Reviews

4.7.2 Preliminary Design Review

4.7.3 Critical Design Review
4.8 Methodologies and Tools....

1

1

1

2

3

3

4

5

5

5

6

7

8

9

9

9

10

13

13

14

15

15

16

17

18

19

20

20

21

22

22

22

23

23

...
111

4.8.1 Structured Design Techniques

4.8.2 Software Design Tools

4.8.3 Data Flow Diagrams

4.8.4 Decomposition .

5 Implementation

5.1

5.2

5.3

5.4

5.5

Recommended Deliverable .

Coding Conventions .

5.2.1 Code Structure .

5.2,2 White Space .

5.2.3 Names and Variables

5.2.4 Modules .

5.2.5 Portability .

In-Line Documentation .

5.3.1 Comments .

5.3.2 Telephone and Pencil Tests

5.3.3 Module Header .

5.3.4 Module Separation .

5.3.5 Variable Descriptors

Data Organization and Libraries

5.4.1 Data Organization .

5.4.2 Libraries .

Summary .

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Recommended Deliverables

Why Test? .

6.2.1 Types ob testing .

6.2.2 Preparing for Test....

Top-down and Bottom-up Testing

Software Testing Stages .

6.4.1 Uniter Module Testing

6.4.2 Subsystem Testing .

6.4.3 System Testing .
6.4.4 Documentation Testing

6.4.5 Acceptance Testing .

Testing Real-Time Systems

Test Documentation .

Debugging .

iv

24

24

25

26

29

29

29

29

29

31

31

34

35

35

35

36

36

37

37

37

38

38

39

39

39

40

40

42

43

43

43

43

43

43

44

46

46

.-

‘U

.

,,’-.

7 Operation and Maintenance

7.1 Recommended Deliverables .

7.1.1 Who Needs Training?

7.1.2 Training Approaches

7.2 Manuals and Procedures . . .

7.3 Conversion

48

. 48 .

. 49

. 49

. 51

. 53
7.3.1 Conversion Preparation 53

7.3.2 Conversion Approaches 53

7.4 Maintenance ..54

8 Configuration Management 55
8.1 Recommended Deliverables 55

8.2 Why Configuration Management? . . . , 55

8.3 What Is Configuration Management? 56

8.4 Change Control ...58

8.5 Maintenance ..61

9 Verification and Validation 62
9.1 Recommended Deliverables , 62

9.2 Why Verification and Validation? 62

9.3 Reviews and Audits ...63

9.3.1 Formal Reviews ...63

9.3.21 nformal Reviews,64

9.3.3 Walkthroughs ...65

9.3.4 Inspections

9.4 Validation Testing

9.5 Debugging . . .

10 Summary Example

. 65

. 68

. 68

69

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

References 71

Glossary and Acronyms 78

Sample Sandia Module Header 83

Control Structures 84

Inspection Report Forms 85

v

Appendix F: Change Control Forms

Index

91

94

List of Tables

1 Example Project Management Aids 8

2 Reference Requirements Methodologies 14

3 Example Interactive Debuggers 47

4 Change Table Sample ...58

5 Baseline Table Sample ...59

6 Change Control Software Tools 60

List of Figures

1 Typical Software Life Cycle.... 4

2 Software Lifecycle Error Sources . . 16

3 DFD O - Software Development Data Flow 26

4 DFD 2 - Design ...27

5 Mini-Specification ...28

vi

-.

,.--%

.

#--

.

Software Standards, Practices, and Conventions

1 Introduction

One of the many advantages hardware holds over software is the ease

of statistical comparisons. It can easily be verified that from 1978 to 1985,

computer capability at the weapons design laboratories increased twenty-

fold, yet one can only guess at the subsequent increase in the amount of

software developed and/or maintained. Nevertheless, the growing impor-

tance of software within the laboratories is now an accepted fact, as is, un-

fortunately, the number of problems associated with software development.

Doing the software job right is increasingly important, and thus standards,

practices, and conventions designed to ensure the quality of software need

to be documented and provided to all individuals producing software.

1.1 Intent

In the spirit of Confucius [“The palest ink will outlive the strongest

memory”], this manual defines and documents software standards, prac-

tices, and conventions, and thus provides an information baseline for the

individual engaged in software development, maintenance, and management

within Sandia National Laboratories. The document outlines the deliver-

ables that many Sandians recommend for such activities. The document and

the deliverables are not limited to “coding techniques;” rather, included are

recommended software design, development, and management practices. A

two-page outline for implementation of these practices on a one-person or ~

small project is provided in section 10. Such projects will require some mod-

ification concerning the detail included in the deliverables (e. g., a plan may

be defined in a short memo), but the deliverables are still needed.

1.2 Environment

On a daily basis, personnel at Sandia National Laboratories create soft-

ware with diverse characteristics and requirements. W R (War Reserve)

1

software required for embedded computer systems, accomplished almost en-

tirely in assembly language, must have high reliability and perform within

a real-time system. Large and complex computer codes for finite difference

analysis are produced in FORTRAN 77, and maintained for long periods

of time. Administrative software is primarily written in COBOL, following

the Systems Development Methodology/Structured [SDM]. Reimbursable

projects for the Department of Defense are written in C or Ada, and often
have to meet software development standards required by outside agencies.

The Sandia personnel who develop or modify these diverse software pro-
jects, however, have several characteristics in common:

*

●

●

They are few in number per project. About a dozen programmers/

analysts is as large as any project usually extends, and one software

professional per software project is not uncommon.

They want to produce a quality software product.

They are under schedule and resource constraints.

The last two characteristics appear to be at cross-purposes with each other.

The schedule and resource constraints can pressure programmers to begin

coding prior to signed-off system requirements and formally produced system

designs. Similarly, these external constraints (or even programmer priori-

ties) can cause an inadequate amount of time to be spent documenting a

project. In the case of a one-person project, the professional may look upon

himself as the primary user, and feel that little documentation is required

for this restricted application. If a requirement for a change were to appear,

he/she assumes he/she will be the one to accomplish it.

1.3 Applicability

The manual is designed to be applied to any software developed or

maintained either by Sandia personnel or by personnel under contract to

the Laboratories. The guidelines are recommended practices and conven-

tions to follow, whether the software involved is W R. or non- WR, written

in assembly language or higher level language, developed by one person or
a reimbursable project software development team, and whether produced

from new requirements or an existing code. For example, although a sam-

ple coding technique in the implementation section of the manual may be

demonstrated using a particular programming language, the principle illus-

trated can be applied in any language.

2 . .

.

f-

The manual is a set of guidelines, not directives. Enforcement of an

application of these guidelines must be established at the project level or

individual level, with management support and promotion. Each individual

project leader must make a conscious decision as to the degree these guide-

lines will be imposed on his/her own project, or the appropriate “tailoring”

of these guidelines to the project and environment at hand. Additional refer-

ences may be required to provide the technical details and design principles

that create the successful design engineering environment. Once the stan-

dards for the project have been established, they must be. publicized and

rigidly enforced. This may be accomplished by referencing this document

(or its applicable subsections or deliverables) in an Engineering Procedure,

a Project Plan, or a Software Quality Assurance Plan.

1.4 Organization

Section 2 of the manual outlines characteristics of software project man-

agement and provides recommendations for project planning. The next five

sections address five of the eight major phases of a typical software life cycle

[Figure 1]: Requirements, Design, Implementation, Test, and Operation and

Maintenance. Next are two sections which cover software quality assurance

activities which occur throughout the life cycle: Configuration Management,

and Verification and Validation. The last section provides a two-page sum-

mary example of how to implement these practices on a Sandia project.

References for additional information are listed by section in Appendix

A. Appendix B provides a glossary of terms. For follow-on investigation,

the book references are available through the Sandia library system, and

DELTAK courses on structured analysis, design, programming, and tech-

niques are available via the Sandia Computing Education Center.

1.5 How to Use This Manual

The manual was designed to aid in planning Sandia software tasks. The

user can turn to any section and immediately apply the information pro-
vided. Each section begins with the Recommended Deliverables for that

phase or that activity, each marked by a •l symbol and followed by informa-

tion to define those deliverables and describe why they are recommended.

The Summary Example (section 10) provides

software development projects. An Index at

erences both terms (e. g., portability) and

an outline for small Sandia

the end of the manual rep-

hrases (e. g., structured

./--
3

CONCEPT
EXPLORATION

l-l

8 I 1

I DESIGN ~—,
1 I I

I 1MPLEMENTATION+—l
1 1

I TEST 1 I

I J

I
RETIREMENTI

Figurel: Typical Software Life Cycle

source code).

The manual is designed to be used in conjunction with references [SSGV1]

through [SSGV5], which will provide details on software quality practices at

Sandia National Laboratories, and reference [IEE84q], the IEEE standard

for preparation and content of Software Quality Assurance Plans, The IEEE

Guide [IEE85] gives some detail on these plans. The IEEE references are

available through Sandia’s Design Information Center, or by ordering from

the IEEE Computer Society.

1.6 Summary

This manual documents software development practices that have been

proven useful within the Laboratories and elsewhere, and presents a frame-

work for creating a uniform product for follow-on software efforts. Tailor

the application of these guidelines to a specific project based on its size,

complexity, and criticality. Remember: on any software project undertaken,

the software produced will most likely be modified by someone other than

the original programmer; so it is important to create a quality product that
any software professional would be glad to maintain. It has been said that
“quality cannot be tested into software; it must be designed in.” At San-

dia, the goal is to engineer in software quality, review out software defects,

and test out software errors. Following the guidelines as indicated will help

achieve these objectives and produce quality software.

4

e

2 Project Planning and Management

2.1 Recommended Deliverable

•l Project Plan

● Project Plan. The project plan is a brief overview of the project. It

defines the project, describes the organization, proposes schedules and

milestones, and defines procedures to ensure the quality of the final

product.

The consequences of neglecting the project plan include confusion over

the deliverables, lack of understanding of the scope of the project, unclear

requirements for resources and time, lack of unifying direction, and inability

to determine project status.

2.2 Why Project Planning?

The goal of a software project manager is to produce a quality soft-

ware product on time and within resource constraints. A quality product is

one that meets the needs of the users and can be reliably used and easily

maintained.

Project planning and management involve many activities. Initially the

scope of the project must be determined; the deliverables must be specified;

and a strategy for accomplishing the project must be outlined. Once this

plan is approved by management and the user agrees that the list of deliv-

erables is accurate, then work can begin. During the life of the project, the

project manager is responsible for many tasks. These tasks include providing

continuity between phases of a project and through personnel changes, fore-

seeing resources (tools, information, staff) that will be required and making

them available, determining the status of the project, and revising schedule

and budget estimates.

The project manager is responsible for assuring that the deliverables of

the project are of high quality. This involves writing and administering

a quality assurance plan. This plan describes the standards, practices, and

conventions to be applied in the software project, configuration management

practices, and validation and verification techniques. The outline for such a

plan is provided in Volume 1 of these Guidelines.

The information in this overview of software project management can

be found in many references. It is just a special case of technical project

.5

management for which a huge body of literature exists. If there is one thing

that Sandia excels at it is project management as applied to weapons (hard-

ware) projects. Standards and practices are documented in the Engineering

Procedures Manual. These same ideas can be applied to software projects

as well.

Since many software projects involve very few people, some people may

assume that the project management function can be ignored. This is wrong.

The size and complexity of the project can determine the formality and depth

of detail of the project plan and management practices. Project planning is

import ant even on small, simple projects.

2.3 Project Plan

The project plan is to be produced by the person with overall project

responsibility. It is a changing document that is not complete until the

project is over.

What follows is an outline for a project plan. A plan should consist of at

least one sentence on each topic, even if it is “Does not apply because ...”.

1.

2.

3.

4

Project Plan Outline

Project Definition

This is a 2-3 sentence statement of the project’s overall goal.

Project Personnel

Necessary functions and the people responsible for them are identified.

If the project team is known, give names. If no staff has been assigned,

describe the type of people required. If this is a one person project,

list the functions that have to be performed with a notation of people
to use as resources or reference.

Project Requirements

This will become the Software Requirements Specification to be pro-

duced in the requirements phase. A rough draft of the specification is

included here before the final version is approved.

Implementation Strategy

This describes the plan-of-action used to accomplish the project.

(a) Schedule/Milestones
Major milestones and accomplishment dates are included here.

6

‘w

Dates are initially estimates that are revised and finally replaced

by the actual date. A minimum set of milestones are:

i. Start Date

ii. Software Requirement Specification Approved

iii. Software Design Description Approved

iv. Software Test Plan Approved

v. Implementation Completed

vi. Testing Completed

vii. Release

(b) Resource Plan

This describes the types of resources required by phase. Re-

sources include staff time, hardware, and other items such as

travel, software, and tools. Resources translate into budget.

(c) Deliverables

This will be a list of items to be produced by the project and the

person primarily responsible for preparing them.

(d) Standards

Standards, practices, and conventions to be applied in the soft-

ware project for requirements, design, coding, and testing.

(e) Dependencies

Other projects or conditions that this project requires for com-

pletion or success are listed. Alternatives are given.

5. Quality Assurance Plan

This section discusses how conformance to project requirements and

standards will be evaluated.

6. Training

If project development personnel require special training (computer

languages, software development techniques, etc.), the details of the

training are listed: courses, schedules, trainees, and costs.

2.4 Project Management

Project management is the ongoing effort to guide, assist, and evaluate

the project development task. It is a control mechanism. Information on

status is achieved through frequent, measurable milestones (as often as every

7

two weeks). A milestone is an opportunity to assess progress and make

changes if needed.

The project plan is constantly being revised to reflect the true state of

the project. In addition to the project plan, a project file can be helpful. It

is an organized collection of pertinent data related to the project. It is used

for reference and communication.

During the course of the project development task, problems can oc-

cur. The impact of these problems needs to be assessed and resolved. It

is a project management responsibility to bring important decisions to the

appropriate level of management.

2.5 Tools, Techniques, and Methodologies

The tools mentioned below are not specific to software project man-

agement. They are general project management packages. Such software

packages differ from each other in their capabilities, available output, and

the complexity of the projects they can help manage. Regardless of the

tool, users are still required to think. All of the packages listed below use

one of two project management techniques or a combination of both. The

techniques are PERT (and CPM) and Gantt charts.

PERT (Program Evaluation Review Technique) and CPM (Critical Path

Method) are network planning concepts. Given information on activities,

time constraints, material requirements, and critical resources, the user can

obtain information on constraints, the critical path, and slack times. These

techniques rely on network diagrams and automated tools to be manageable.

G antt charts emphasize a visual representation of a project plan. These

planning charts show start date and time to complete activities. Some of the

information available from the PERT and CPM techniques are frequently

integrated into the Gantt technique.

[Aid: Technique: Available on:

TELLAPLAN Gantt, PERT VAX/VMS

Microsoft Project Gantt IBM PC/DOS

VisiSchedule Gantt IBM PC/DOS

Harvard Total Project Manager Gantt, PERT IBM PC/DOS
I Diagram Master I Gantt I IBM PC/DOS

Table 1: Example Project Management Aids

3 Requirements

3.1 Recommended Deliverables

0 Software Requirements Specification

•l Software Requirements Review

. Software Requirements Specification (SRS). The SRS is a de-

scription of the external interfaces and essential requirements of the

software in terms of functions, performance, constraints, and attributes.

Requirements are objective and measurable. The SRS is concerned

with what is required, not how to achieve it.

● Software Requirements Review. A review of the SRS document

is performed by project members, users, and management. It veri-

fies that the intent of the SRS is clear, the software proposed by the

SRS is what is desired, and that the project can proceed to the next

development phase.

Omitting the SRS may result in any of the following problems: building

a system that is not what the users or sponsor wants; going over budget

and behind schedule due to lack of a complete specification from which to

estimate schedule and resources; developing software that does not integrate

with existing software, hardware, or environment because design constraints

were not understood; having design and testing problems since a definition

of the software is lacking; and creating misunderstanding, confusion, and
low morale among the project team members.

The consequences of skipping the Software Requirements Review are

misunderstandings about what will be delivered because formal approval

and signoff by developers, users, sponsors, and managers of the project is

lacking.

3.2 Why Requirements?

The initial phase of a software development project is the requirements

phase. The purpose of this phase is to document why this software project
was initiated and what this software project is to accomplish. It consists of

two major steps. At the end of each step a tlocument is produced.

The first step in the requirements phase is the production of the software

requirements specification (SRS). It is a description of the requirements that

7----
9

the software must meet. To formulate the requirements, the environment

in which the software will be used must be known. Information about the

current operation, the users’ needs and problems, constraints on the solution,

and user expectations is collected. This information will be incorporated in

the SRS in various ways.

Make every attempt to include a knowledgeable user on the team pro-

ducing the SRS. A user can be a valuable source of information and can
help to keep the SRS focused on user issues.

In the requirements phase, several alternatives are explored including

off-the-shelf software. The requirements team is responsible for proposing
the simplest, most cost-effective solution – not just a solution.

The SRS document includes a statement of purpose and scope for the

software, background information that is required to understand the specifi-

cation, the users’ view of the functions that will be provided by the system,

and the entire environment (hardware, software, interfaces, operation) in

which the software system will exist. This document emphasizes measurable

requirements – speed, quantity, and volume. The SRS provides a standard

against which the software design and implementation can be measured.

The second step is to determine the adequacy of the SRS, via a Soft-

ware Requirements Review. Participants in the review are the project team
members responsible for design and test, users, sponsors, and management.

Participants must reach a consensus and formally approve the SRS.

There is an overlap between the requirements phase and the design

phase. This is beneficial as long as the two phases do not become concur-

rent. The overlap with the design phase can provide feedback on feasibility,
resource requirements, and user interface issues.

3.3 Software Requirements Specification

The SRS is an explanation of what the software does from the user’s

perspective, not how itwill be done. This document provides the developers,

users, sponsors, and management an opportunity to say exactly what this

project is to accomplish. All of these people formally approve it. If there

are disagreements, they should be resolved at this time. Changes at the
requirements phase are very inexpensive and very easy compared to changes

made during the test phase.

The approved SRS is a controlled project document. Changes to it are

approved by another Software Requirements Review. All members of the

project team have access to the current version of the SRS to prevent re-

10

‘d

.

.

design.

Even a tentative attempt at writing an SRS can yield benefits. A one

sheet summary that is referenced and current is worthwhile. First and fore-

most, the SRS must be readable and understandable. Diagrams are used

liberally.

The outline provided below can be modified to fit specific needs or cir-

cumstances. An SRS is applicable to every software project except those

that will be thrown away within one month. These type of projects are very

rare since people share programs, and program source is rarely thrown away.

A good guide to the SRS is the IEEE Guide to Software Requirements

Specification [lEE84r]. It provides explanations and examples and is the

source of the following: ,

Software Requirements Specification

Outline

1. Introduction

(a) Purpose

The reason for writing the SRS is explained. The intended audi-

ence is defined.

(b) Scope

This section presents an overview of what is to be produced. The

wording used is as specific as possible.

(c) Definitions, Acronyms, and Abbreviations

This section explains the terminology that is used in the SRS.

A very wide audience of people has to read and understand it.

Glossaries such as the IEEE Standard Glossary of Software En;

gineering Terminology [IEE83g] can define general terms.

(d) References

This is a bibliography of all documents mentioned in the SRS.

(e) Overview

This is a summary of what is contained in the SRS and its orga-

nization.

2. General Description

This section is intended to provide a macro view of the project. It

does not list specific requirements. Its purpose is to create a context

in which the specific requirements can be understood.

11

(a)

(b)

(c)

(d)

(e)

Project Perspective

This section describes how this project and its products fit with

other projects and products. If it is independent, this is stated.

Software Functions

The functions to be provided by the project software are summa-

rized.

User Characteristics

The end users of the system are identified. There may be several

classes of users with different skills who require different types of

information.

General Constraints

This section provides information about conditions that will limit

the software design.

Assumptions and Dependencies

Possible changes to the constraints that would affect the require-

ments are listed.

3. Specific Requirements

This section contains all the information that the software designer

requires to complete the software design. This section is the heart of

the SRS.

(a)

(b)

(c)

(d)

(e)

Functional Requirements

Basic actions that must occur in the software are given for each

function.

Performance Requirements

This section contains numerical requirements to be placed on the

software such as number of simultaneous requests or transmission

time given file size and system load.

Design Constraints

Limitations and restrictions are given that result from standards

and hardware.

Attributes

Special circumstances such as the need to process classified data
may add software requirements.

External Interface Requirements
Requirements for interfaces with users, hardware, other software,

environmental power, and communications are specified.

12

3.4 Software Requirements Review

The Software Requirements Review is a formal examination of the SRS

document by project members, users, sponsors, and management. Its goal

is to verify that the SRS document adequately and unambiguously describes

the project requirements, and that those requirements are testable and easily

traceable.

A set of criteria for evaluating the SRS is established. One possible

set is: unambiguity, completeness, verifiability, consistency, modifiability,

traceability, and usability during the operations and maintenance phase.

A Software Requirements Review Report is produced that indicates de-

ficiencies in the SRS and written addenda or corrections that would resolve

the deficiencies. All the participants must agree on the SRS. They must

understand it, agree that it describes the software desired, and give autho-

rization to continue development.

Guidance in conducting a formal review can be obtained in Section 9 of

this document.

3.5 Prototypes

Prototypes have a place in the requirements phase of a software project.

A prototype is a minimally functional system used to illustrate the software’s

user interface or to prove the feasibility of a concept. Caution: This is a

non-standard definition of the word prototype. Engineers would typically

think of a prototype as a first, fully functional system or a pattern. The

term as used here is common in the software community, as in “rapid proto-

typing.” Synonymous terms are fa~ade, demonstration model, and cartoon.

An analogy used to explain a software prototype is the Western town cre-

ated for a movie, where buildings are just faqades. The viewer sees only the

street which appears realistic.

Prototypes are used to understand a complex user interface. The users

and developers may not know exactly what the interface requirements should

be. Prototypes allow both of them to get some experience with the user in-

terface before the requirements are set. Users must be involved in a proto-

type if it is to be valuable. Human factors experts can be helpful in designing

prototypes.

Another use for prototypes is to prove the feasibility of a concept. A

simple model that requires minimal resources is created to learn about the

system, try out new algorithms, verify capabilities, etc. It is this type of

13
/--

prototype that can become the system. This pitfall must be avoided. It

is necessary to clearly define the scope and limitations of the prototype.

There must be a way to determine when the prototype is complete. Given

the prototype experience, the SRS can be completed. There is no obligation

to use any part of the prototype in the design or implementation.

3.6 Tools, Techniques,and Methodologies

The following methods are available to help define the user’s require-

ments and produce the software requirements specification. These method-

ologies are not presented with any endorsement or suggestions. They are

listed in Table 2 as references for further investigation.

Acronym: Methodology: Reference:

SSA Structured Systems Analysis [GAN79], [DEM78]

SADT Structural Analysis and [ROS77], [ROS77b]

Design Technique

PSL/PSA Problem Statement Language/ [TE177]

Problem Statement Analyzer

SREM Software Requirements Engineering [ALF77]

Methodology

USE User Software Engineering [WAS79]

Specification Method

SDM/S Systems Development Methodology/ [SDM], [SNL]

Structured

Table 2: Reference Requirements Methodologies

These approaches attempt to provide a structure for the specification

and to illustrate the system development process. For a brief description

of the first five techniques, see [WAS80]. Another source of information is

Volume 5: Tools, Techniques, and Methodologies [SSGV5].

14

“.-/

4 Design

4.1 Recommended Deliverables

❑ Design Description

❑ Design Review

•l Design Review Results

. Design Description. A Design Description documents the design

work accomplished during the design phase. Documenting the design

prior to coding avoids (or reduces) any design misunderstandings and

subsequent re-coding.

● Design Review. A Design Review is held to present and to discuss

the design. The design is reviewed to discover any design inconsisten-

cies or unmet requirements prior to the implementation phase.

● Design Review Results. The results of the review are documented

in a report which identifies all deficiencies discovered during the review

along with a plan and schedule for corrective actions. The updated

design description document, when placed under configuration control,

will establish the baseline for subsequent phases of the software life

cycle.

People on projects who wish to avoid the design phase should be aware

that most software life cycle errors occur during the requirements and design

phases, as shown in Figure 2 below. If these errors are allowed to propagate

through the implementation and test phases, they will be more costly to

correct.

Tailor the design deliverables described in this section to the project at

hand. For example, subsection 4.6 discusses two different design description

documents which are produced at different points in the design process.

A large project, involving many people, may require both documents. A

smaller, or less complicated, project should need only one document. Sim-

ilarly, a project with many interfaces between users or between different

software may require the two reviews discussed in subsection 4.7. A project

with few” interfaces or easily controlled interfaces should require only one,

possibly less formal, design review. Any structured walkthroughs may be

delayed until the implementation phase when software coding is done.

15
/---

w

/GA
[

REQUIREMENTS
& DESIGN

)

v ------ /

Figure 2:

4.2 Why Design?

Software Lifecycle Error Sourcesl

The requirements and design are two of the most important and ne-

glected phases in the development of software. If the requirements and

design have been developed in an organized and systematic manner, then

all that remains is for the program logic (described in pseudocode or struc-

tured English) to be translated into program code. Take the following to

heart:

“Think first, code later.” 2

Many coding problems can be avoided by following good design methods

before doing any coding. Yourdon and Constantine [YOU79] emphasize

that by “introducing a specific formal design activity to describe fully, and

in advance, all the pieces of a system and their interrelationships, we have

not created a new activity in the program development cycle. Structured

design merely consolidates, formalizes, and makes visible design activities

and decisions which happen inevitably – and invisibly – in the course of every
systems development project. Instead of occurring by guesswork, luck, and

‘Source: Seminar by George Tice, “Software Quality and Productivity Improvement,”
SNLA, Feb 13, 1986.

2quoted by David King but originally found in L. B. Chumra and H. F. Ledgard’s COBOL
withStyle: ProgrammingProverbs, R.ochellePark, N.J. Hayden Book Co. 1976

16

‘w’

default, these decisions can be approached deliberately as technical trade-

offs.”

Software that is to be of any long-term use to others, is designed to

meet their needs. Users are included in the design of the product and, more

importantly, in the definition of the requirements of the product. The time

spent in design will be more than compensated for by software that is easier

to maintain. There probably is more software being maintained or modified

at Sandia than software being developed.

Another aspect of well thought out requirements and design is especially

important within Sandia: Hardware is relatively inexpensive; person-time

and person-costs are becoming the primary factors in projects, and thus

methods that primarily involve people need to be streamlined. Contractors

should have a set of guidelines to follow in writing codes for Sandia.

Other sources give reasons for design. Freeman [FRE80b] writes, “Per-

haps the most important reason to design is that the creation of complex

systems involves a very large amount of detail and complexity (i. e., rela-

tionships of many sorts between many of the parts). If this complexity is

not controlled, then the desired results will rarely be achieved. Design is

the primary tool for controlling and dealing with this mass of detail and its

attendant complexity. The regularity and structure of design methods and

techniques serve to guide us through complex chains of reasoning where we

might otherwise become lost.” Two other reasons for design are to aid in the

discovery of the underlying structure of the problem and to improve system

quality. During design, there “is not yet a huge investment in code and

detailed decisions which cannot be changed when an evaluation indicates

that desired system properties are not being met. If reliability, useful user

functions, modularity, and so on are not planned for before programming is

begun, then generally they will be unobtainable. “ [FRE80b]

4.3 Software Design Criteria

Once the software requirements have been established, the design phase

can proceed. The design phase consists of the preliminary design of the

software system, through the detailed design, up to (but not including) the

coding in the implementation phase. The preliminary design defines the

major elements of the software, the interfaces between those elements, and

the flow of information through the system. The detailed or critical design

provides a blueprint for coding. It includes sufficient detail for someone other

than the software designer to develop the resultant source code. Design is

17

an iterative process. Even after a design has been reviewed and approved

(baselined), it still is subject to modification through the change control

process.

Several criteria are followed for a good design. The following guidelines

are given by Pressman [PRE82]:

. A design should partition the system into elements which perform

specific functions. A design should be modular.

● A design should have a hierarchical organization to utilize the control

among the software elements. A design should be refined in a top-down

manner.

. A design should lead to modules or subroutines that perform indepen-

dent functions.

● A design should be derived from information obtained during the soft-

ware requirements process. The design process should be repeatable.

Design needs to be more of a science and less of an art.

Real-time applications (that measure, analyze, and control real world

events as they occur) should not be exempt from the design process, Re-

sponse times and bounds on software execution speed will impose additional

design constraints. If response times are not met in the testing phase, the

code can be checked and time-critical sections can be recoded.

4.4 General Design Standards and Guides

This section lists guidance available in two IEEE documents, the IEEE

Software Quality Assurance standard [IEE84q] and the recently approved

IEEE Guide for Software Quality Assurance Planning [IEE85]:

● Prepare a Software Design Description (SDD) to describe the major

components of the software design (to include data bases, diagnostics,

and interfaces). The SDD should describe how the software will meet
the requirements of the Software Requirements Specification. It also

provides a decomposition of the system into its components.

‘--.-/

. Seriously consider using graphical techniques, top-down design, and a

program design language.

18

P

●

☛

●

State what standards, practices, and conventions will be followed in

the detailed design of the program modules and their interfaces. Cover

such areas as naming conventions and argument list standards.

Hold a Preliminary Design Review (PDR) to evaluate the technical

adequacy of the preliminary design of the software as outlined in a

preliminary version of the Software Design Description.

Hold a Critical Design Review (CDR) to determine how well the de-

tailed software designs as described in the Software Design Description

satisfy the requirements of the Software Requirements Specification.

The SDD mentioned in this section is split into the preliminary design

document and the detailed design document (subsections 4.6.1 and 4.6.2).

The following subsections on design give additional detail and sugges-

tions for implementing the IEEE guidelines.

4.5 Detailed Design Procedure

The individual elements of the software system such as subroutines, func-

tions, or-}rocedures initially should be described with an English-language

narrative explaining the processing function of the module. Then, a detailed

design tool can be used to translate the language narrative into a structured

description that gives all necessary procedural detail. The following three

types of detailed design tools should aid the designer:

● graphical tools

● tabular tools

. language tools

Graphical design tools visually depict procedural detail. These tools

include ilowcharts3 and box diagrams (also known as Nassi-Schneiderman

“charts or Chapin charts for their developers). Data flow diagrams can be

3An interestingopinion with regard to flowcharts: Brooks [3] tells us, “The flow chart is a
most thoroughly oversold piece of program documentation...The detailed blow-by-blow
flow chart is an obsolete nuisance, suitable only for initiating beginners into algorith-
mic thinking. When introduced by Goldstine and von Neumann, the little boxee and
their contents served as a high-level language, grouping the inscrutable machine-language
statements into clusters of significance.n

19

.,

used to depict the flow of data through the system. There also are tools for

modeling data [MAR83]. Section 4.8 discusses design tools in more detail.

Tabular tools include decision tables and IBM IPO (input-processing-

output) charts, sometimes referred to as HIPO charts. These are discussed

in more detail in subsection 4.8.

Language tools include a program design language (PDL), or pseudocode.

It is not necessary to use specific design languages. The designer may pre-

fer a type of highly structured English using IF-THEN-ELSE constructs,

REPEAT UNTIL, BEGIN and END, FOR and DO, VARIABLE, CASE,

and DO WHILE statements. The detailed module description is another

approach. Such a description includes all data input to and output from

the module, a list of all modules which call this module (CALLED BY), a

list of all modules called by this module (CALLS TO), and a description

or purpose of the module. This module description can later become some

of the module header, discussed in section 5.3.3. The CALLED BY and
CALLS TO pieces of information are necessary in the design phase to ex-

plicitly describe all module interfaces. Since no code has been written at

this point, there is no other source for detailed module interface information.

If the software is re-designed at a later date, the design documentation is

updated to reflect any changes which also will be reflected in the code. An

automated design tool may help. At the very least, the design information

can be entered on a computer and accessed via a powerful editor or word

processor.

4.6 Design Description Documents

4.6.1 Preliminary Design Document

The Preliminary Design Document (PDD) gives an overall repre-

sentation of the software system to be designed. It documents the software

structure addressed during the preliminary design phase and is used as input

to the preliminary design review.

Pressman [PRE82] suggests that the following topics be included in the

document:

● System objective and software’s role

. Interfaces among hardware, software, and humans

● Major software functions

20

. External files and databases

. Design constraints and limitations

. Reference documentation

. Design description. This includes descriptions of the data, the flow of

information, and the interfaces within the software.

If vendor software will be used as part of the system, the vendor docu-

mentation should be referenced in the PDD.

Much of the information is derived from the Software Requirements Spec-

ification (SRS) developed during the requirements phase. The PDD takes
the SRS as input and expands the information to a more detailed design

description. In other words, the software system is taken from the point of

what should be done, to the beginning of how itshould be done.

4.6.2 Detailed Design Document

As the preliminary design moves into the detailed or critical design, the

detailed software system description is extended down to the module level.

Pressman [PRE82] suggests that the preliminary design documentation be
expanded to include the following topics in the detailed design document:

. Module descriptions. This includes a description of the process, an

interface description listing all data input and output from a module

(including argument list data, external 1/0, and global variables), and

interfaces with other modules (called by and calls to). The description

should clearly describe the major tasks and processing that occurs

within a module.

. File structure descriptions. This includes logical descriptions of the

external files and the data records.

. Global data descriptions.

. A cross-reference between the requirements and the modules critical

to implementation of the requirements.

/----

● Test provisions and guidelines.

21

.-

‘k.&

● Packaging and software transfer considerations. This may include high

performance requirements or physical memory limitations which may

cause modification in the design and a description of the operating

system characteristics necessary to understand the design.

4.7 Design Reviews

There are many different approaches to software design review. Gener-
ally, the preliminary design review and the critical design review are formal

reviews. They require significant preparation and may involve a fairly large

number of reviewers (maybe 8 to 12). The formal review can act as a sched-

uled milestone for large software development systems. A smaller software

effort, involving 1 or 2 people, may have a less formal preliminary design

review with fewer reviewers. The preliminary design review is important to

projects of all sizes to raise design issues (but not to resolve them) early in

the project’s life cycle and to gain both management and technical visibility.

The informal review involves a smaller number of people (perhaps 2 or 3)

and may run from impromptu get-togethers to the structured walkthrough

or the inspection process, discussed in section 9.3.

4.7.1 Criteria for Design Reviews

A software design review may include representatives of management,
design, quality assurance, and the end-user community. A rule of thumb is

to include the same number of reviewers as designers. The reviewers should

take an adversary viewpoint but should remember that they are challenging

the software system design and design approach and not the designers. A

benefit of the design review process is the early discovery and correction of

software defects and errors prior to code development. It is best to get the

most experienced people available as reviewers to detect as many errors as
possible, as early as possible in the software life cycle.

All groups concerned with the design should participate in the review.

This could include representatives from testing, software quality assurance,

software development, system design, and the user/requester community.

4.7.2 Preliminary Design Review

L...’”

The preliminary design review should emphasize traceability of the de-

sign to the software requirements, the practicality and maintainability of

the design, and the adequate definition of the interface and data structure

22

descriptions. Other design approaches should have been considered and rea-

sons given for their rejection. Alternatively, the selection criteria may be

enumerated. If the chosen design approach fails, an alternative approach

may be available. Software limitations should be realistic, be acceptable to

the final users, and be consistent with the Software Requirements Specifica-

tion from the requirements phase.

Document the results of the review in a report which identifies all de-

ficiencies discovered during the review along with a plan and schedule for

corrective actions. The updated design document, when placed under con-

figuration control, establishes the baseline for the detailed software design.

4.7.3 Critical Design Review

The critical design review is a review of the detailed design of the software

system prior to code development and implementation. It also is called

the detailed design review. The detailed design is examined to assure that

it will be easy to translate into computer code and that it satisfies the

Software Requirements Specification. The module descriptions should not

be ambiguous. The software design should be verifiable, consistent with

other elements of the system, and well documented.

Document the results of the review in a report which identifies all de-

ficiencies discovered along with a plan and schedule for corrective actions.

The updated design document, when placed under configuration control,

establishes the baseline for coding.

4.8 Methodologies and Tools

There are many tools available. An overwhelming compendium of 412

software life cycle tools is given in [DAC85]. Many tools may not meet the

needs of the Sandia project. For software projects with multiple designers,

users, or interfaces, the design tool should be automated. Design changes can

then be incorporated quickly without the initial design becoming obsolete.

In the absence of all other tools, a rigorous design methodology could be
combined with a word processor to document the design. Other features of

the methodologies and tools to consider include the following: ease of use,

short learning curve, ready availability to designers, graphics, structure,

lack of ambiguity, and straightforward translation from detailed design to

code. The discussion that follows indicates a few of the methodologies and

techniques. Names and references are sprinkled liberally throughout for the

23

interested reader.

4.8.1 Structured Design Techniques

The proponents of structured design can be classified according to ap

preach: functional decomposition or data structured design [KIN84]. The

functional decomposition approach includes data flow approaches and hier-

archical structure charts showing structural aspects of a system. The data

structured design approach emphasizes the structure of the data being pro-

cessed. The functional decomposition methods seem better suited to the

overall system specification and design phase, while the data structured

design approach is appropriate for the design of individual programs and

subroutines. As time goes on, the two structured design approaches may

integrate each other’s philosophies into their own.

Page-Jones [PAG78] discusses and gives examples of structure charts,

data flow diagrams, pseudocode, data dictionaries, and mini-specs. Struc-

ture charts depict the partitioning of a system into modules and show the

hierarchy, organization, and communication interfaces between the modules.

The data flow diagrams may be used as precursors to the hierarchical struc-

ture charts. The set of lowest-level data flow diagrams may be translated

into structure charts in order to show the time sequence of the processes

necessary for coding.

Yourdon and Constantine [YOU79] discuss structure charts and compare

them to the more familiar flow charts. The flow chart shows a sequence

of steps to be executed, or the flow of control. Structure charts, on the

other hand, distinguish between control data and normal data in the system

with different types of connecting arrows between the boxes. The structure

chart shows hierarchy, or which functions are subfunctions of which other

functions. The boxes in structure charts are a bounded group of program
statements which can be referred to as a unit. The IBM HIPO (Hierarchical-

Input-Process-Output) representation of inputs to outputs complements the

structure charts. The HIPO chart for a module should have three columns
—the INPUT parameters, the OUTPUT values, and the PROCESSes which

give the relationship or transformation process between the INPUT and

OUTPUT entries.

4.8.2 Software Design Tools

Several functional decomposition and data flow tools are available. Your-

24

,

.

,7---

don has aggressively marketed the data flow diagram approach. Other data

flow approaches are the Structured Analysis and Design Technique (SADT)

developed by Ross of Soffech and the Improved System Technology (1ST)

product of McDonnell Douglas Automation developed by Gane and Sarson.

Some of the techniques have been automated and can be used on a

computer. Tektronix has automated the data flow diagram approach using

DeMarco’s book as a guide. Teledyne Brown Engineering has developed the

Technology for the Automated Generation of Systems (TAGS) which con-

sists of the following four software packages: storage and retrieval, configu-

ration management, diagnostic analyzer, and simulation compiler. TAG S is

available for Apollo and VAX 11/700 computers; the Tektronix tool oper-

ates on a VAX. In many areas at Sandia, personal computers are prevalent.

The following personal computer software packages can be used for software

design:

●

●

●

Excelerator

AutoCAD

Action Diagrammer

4.8.3 Data Flow Diagrams

The following paragraphs give an example of Yourdon’s data flow dia-

gram and mini-specification approach as an example of a design and doc-

umentation technique. A discussion of the graphical technique is given by

DeMarco [DEM78].

A data flow diagram (DFD) is a graphical technique for representing

information flow. The data flow diagram is also known as a data flow graph

or a bubble chart. Figure 3, labeled DFD O, gives the top level of a data flow

diagram. User input which is external to the system is depicted by a box.

Processes are shown as circles, while the flow of data between the processes

are indicated by the arrows. Figure 4 (labeled DFD 2) is a more detailed

break-down of process 2 (Design) in DFD O. The final figure (5) is called a

mini-specification and gives additional detail on process 3 (detailed design)

in DFD 2. The data flow numbering scheme gives the number 2.3 to the
mini-spec, indicating that it is a further break-down of process 3 in the level

2 DFD.

The entire software system model can be depicted by a single bubble
with arrows representing the input and output data. This top level diagram

25

requirements—
wdoc.mentXn_ ,

uaer-
fcnl–

design–
changes

reqmnts
document

d

D

hordwore—
● pees

Users Chongm
Control

.5

lmpleman -
totion

reque~ted- ,3

software-
mods

-9

Testing
.4

coded—
so ftwore

~ product

Figure 3: DFD O - Software Development Data Flow

can be refined into a series of bubbles to provide greater detail about the

software system. The refinement can be continued to additional layers to

show any desired level of detail.

4.8.4 Decomposition

Myers [MYE78] discusses ways to decompose the design problem into

modules. He defines a module as a group of executable program statements
that are a closed subroutine and have the potential of being independently
compiled and called from any other module in the program. The average

module size should be about one page of executable statements. The mod-

ule size may vary quite a bit, depending on the computer language used

in the implementation phase and the internal complexity of the module.

Each module should be highly cohesive (perform one single function) and

26

i’--

.

.

\ design-

requirements - standards

f-

Figure 4: DFD 2- Design

.

.

be loosely coupled to other modules (have few pieces of data passed between

modules). As further reference, David King [KIN84] and Meilir Page-Jones

[PAG78] discuss different types of cohesion and coupling in their books. The

following rule of thumb also may prove useful in determining module size:

if what a module does can be described by a simple sentence, then the level

of decomposition is about right.

The methodologies and tools discussed here are merely examples of de-

sign tools available on both pefsonal computers and mainframes. Volume 5

of these Guidelines will provide details on these and other software quality

tools available to Sandia personnel.

,---- 27

.

detailed design
L.Marsupe
11/20/86
23

IF the design has gone through the change control process
THENincorporate the design-changes approved by the

change control process
ELSEincorporate the design-modifications into the

prelim-design-document
ENDIF

DO (for all elements in the system structure)
decompose the rudimentary system descriptions down

to module descriptions
write module descriptions listing inputs, outputs,

and the purpose of the module
create a detailed-design-document

ENDDO

ENDOFMODULEdetailed design
[EOB]

Figure5: Mini-Specification

28

.

5 Implementation

5.1 Recommended Deliverable

•l Structured Source Code

Implementation is the translation of the detailed design into a computer

language, a process commonly called coding. This section gives some sug-

gestions on implementing good code. Well written source code is easier to

read, test, debug, and modify. Many of the ideas in this section can be found

in the book The Elements of Programming Style [K ER74].

5.2 Coding Conventions

Once a software project detailed design hatsindicated a specific program-

ming language, coding standards for that project must be established. The

specifics of those standards are not as important as is their establishment

and enforcement: be consistent. This section presents generic coding con-

ventions, i. e., concepts which apply to any lamguage.

5.2.1 Code Structure

Good code reads from top to bottom. Avoid “spaghetti code”, i.e.,

any code in which the flow of control jumps around the source file so that

program flow looks like a bowl of spaghetti. If the code is readable from top

to bottom, less time will be spent interpreting program flow.

To aid in top to bottom flow use single entry, single exit control struc-

tures. Some examples are IF - THEN - ELSE, DO - WHILE, and REPEAT

- UNTIL type structures. Appendix D presents graphical representations of
these control structures. Some languages, such as assembler, do not provide

these constructs or only provide a limited set. Missing high-level constructs

can be implemented using more primitive constructs such as sequencing and

conditional jumps. [BOH66]

5.2.2 White Space

The use of white space (spaces, tabs, and carriage returns) can make

code easier to read, and help show the logical structure of the code. Indent

single entry, single exit control structures. Use blank lines when necessary

to make the code less crowded. Consider the example on the next page.

29

.—

‘u

/**

function: font

description: Sets the fonts up.

inputs: global variable with pointer to printer.

outputs: sets primary or secondary font.

calls: font_set. The actual work routine.
*/

fonto

{
static char *m[]=

{
!!Font Selection Menu” ,

t~change Primary Font” ,

JJchange Secondary Font”,

“Return to Main Menu”

};
int mr;

int ret=O;

/* init. menu */

do

{
do

{
mr = menu(m,3) ; /* display the menu above.*/

if(mr == -1) putchar(7); /* mr is selection number */

1

while(mr == -1);

switch(mr)

{
case 1: font_set(’’p”); break;

case 2: font_set(’’s”) ; break;

default: ret=l; break;

}

3
while(ret == O);

3
/**/

30

5.2.3 Names and Variables

.

..

Use good mnemonics for names and labels. Some languages allow long

names that can yield easy-to-read code. Use that valuable capability to its

fullest extent. For example:

CYLINDER.VOLUME= CYLINDER_HEIGHT * PI * CYLINDER_RADIUS ** 2

Beware of languages that allow long names, but only use the first few

characters for identification. The above example fails if the compiler uses

the first eight characters to identify a variable name.

Some languages limit a name to a small number of characters (e.g. ANSI

FORTRAN 77’s limit is six). Good mnemonics can be generated by dropping

letters from the end of a word:

CYLVOL = cYLHEI * PI * (CYLRAD ** 2)

Data must be mapped into the available data types in a given language.

For example, temperature data might be mapped into real numbers. Some

languages such as Ada provide a very rich and powerful environment for

this task. Others such as LISP and FORTRAN provide a more primitive

environment. The mapping should be done consistently throughout the

program. Every variable may be explicitly typed or may be implicitly typed

based on some special character in the variable name. Choose the mapping

that yields the most readable and clear source code for the problem to be

solved. For example, if a FORTRAN program requires only integers, then

implicitly declaring all variables integers yields a wide-open environment for

generating mnemonics.

5.2.4 Modules

Break programs into smaller, logically distinct pieces called modules.

Modules are identified in the design phase of program development.

Keep modules small. Use module complexity as a guide to limit the size.

Modules should have about one page of executable lines of code. Modules

of one page (total) are convenient due to readability. Module size can vary

depending on the language used.

Keep module interfaces simple. Pass the barest minimum of information

to a module. Keep local information inside modules. When calling a routine,

,/- 31

the caller should pass only needed information, and the routine should return

a well defined result. Pass information in a “need to know” manner.

Write modules with a single entrance and single exit unless violating this

rule results in improved clarity or readability. Three commonly occurring

situations where multiple entrances or exits are useful are multiple loop

exits, error handling, and data encapsulation [FA185]. Before using multiple

entrances or exits, closely examine the algorithm and try to redesign it to
eliminate the multiple entrances or exits.

The two following examples illustrate some of the code structures rec-

ommended in this section.

************** ************** ************** ************** +******

* routine : message
*************** *************** %************** *************** ***

*

* description: sends a message string to the console

* inputs : message location offset on stack (word) .
* message of form (length, ‘message string’) .
* note: length = message length + 1. (includes length byte)
* max length of message 254.
* This is a threaded routine, so no subroutine return.

u

* outputs: none
* called routines: chout

*

hmess header 05, ’mess’,00,$OOO0
move. w (a5)+,al get offset from stack

lea (a4,al),a0 compute mess address,put in aO

clr.1 d6
move .b (aO)+,d6 mess length to d6

retype subq . b #2, d6 fix count for dbcc
loop move . b (aO)+,dO

j sr $chout(a4) chout is offset to output routine

dbf d6 , loop done outputting chars? no, loop

next yes, end.
*

32 .

.

.

c ======= =S==s== ======= ======= ======= ======= ======= ======= ======= =

C ROUTINE: FGETC

c ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====

C DESCRIPTION: FGETC RETURNS THE NEXT CHARACTERIN A FILE.

c

c

c
c x NOTE:

c

c

C USAGE:

c

C INPUTS:

C OUTPUTS:

c

C VARIABLES:

c

c

c

c

c

c

C CALLS:

c

EOF IS INDICATED BY CHAR(26): CONTROL-Z;

CR: CHAR(13) IS RETURNEDFOR END OF LINE.

FGETC READS A LINE AT A TIME AND RETURNS NEXT CHARACTER,.

DON’T USE IT FOR SINGLE CHARACTERTERMINAL INPUT.

CHAR=FGETC(FILE.LOGICAL.UNIT)

LOGICAL UNIT OF FILE

NEXT CHARACTER

CR - CARRIAGE RETURN CHARACTER

EOF - END OF FILE CHARACTER

LINE - CURRENTLINE OF TEXT

LP - POINTER INTO CURRENTLINE

LU - LOGICAL UNIT OF FILE TO READ.

TRIM GIVES LENGTH OF LINE WITHOUT

TRAILING BLANKS

C ASSUMPTIONS: A SEQUENTIAL FILE HAS BEEN OPENEDAS LU.

c==`===================

CHARACTER*1 FUNCTION FGETC(LU)

CHARACTERLINE*132

CHARACTER*1 EOF,CR

INTEGER LP

INTEGER TRIM

SAVE LINE,LP,I

DATA LP/O/

EOF=CHAR(26)

CR=CHAR(13)

c

c WHENEVERTHE LINE POINTER IS ZERO, READ A NEWLINE

c

IF(LP.EQ.O)THEN

33

LP= 1

READ(LU, l,IOSTAT=I)LINE

LENGTH=TRIM(LINE)

1 FORMAT(A)

END IF

c
C * * Processor Dependent

c I WILL BE -1 WHEN

c
IF(I.EQ.-1)THEN

FGETC=EOF

LP=O

Code : Interpreting non-zero IOSTAT:

THE EOF IS REACHED, SO RETURNEOF CHARACTER

c WHENLP PASSES THE END OF THE LINE, RETURN A CARRIAGE RETURN

c

ELSE IF(LP. GT.LENGTH)THEN

FGETC=CR

LP=O

c

c OTHERWISERETURN

c

ELSE

THE CHARACTERAT LP

FGETC=LINE(LP:LP)

LP=LP+l

END IF

RETURN

END
c==------ ========. . ===========. . =======. . =. . =================== ===. .

5.2.5 Portability

Whenever possible, work in a standard language (e.g. ANS1 FOR-

TRAN 77). Use of non-standard features which inhibit portability should be

avoided. Portability (the ease oftransferring software from one environment

to another) makes code reusability possible. Isolate non-portable parts of
the program in subroutines or functions and identify the non-portable code
with comments. If a portable version of the code is available, then include

it in the comments. Remember that any processor dependent code is non-

portable.

Use symbolic names rather than explicit constants. For example:

34

c

c EXAMPLE IN FORTRAN77 TO SHOWSYMBOLIC CONSTANTS

c

c LUOUT AND LUIN ARE THE LOGICAL UNIT NUMBERSFOR THE CONSOLE

INTEGER LUOUT

INTEGER LUIN

PARAMETER (LUOUT=6,LUIN=5)
c**

/“ Whenever possible, parametrize the environment to enhance

portability of symbolic constants, as with the constant PI:

*/

pi=4*ATAN(l)

/**/

5.3 In-Line Documentation

5.3.1 Comments

Many persons have stated “Good code is self-documenting”. For most

modern programming languages, however, this statement is false. Easy-to-

read code can be written, but some in-line documentation is always neces-

sary.

The number of commentsto includein aprogram depends onthelan-

guage used. Assembly language programs should have frequent comments,
while high level languages such as Pascal may need comments only at mod-

ule boundries. When the code changes, update the comments so that they

match the new code. Code maintenance is difficult enough without having

the code and comments say two different things.

5.3.2 Telephone and Pencil Tests

Two useful tests to check code readability and comments are the tele-

phone and pencil tests. The “telephonetest” checks for code clarity. Ifcode

can be read aloud (over the phone) and someone else can understand it,then

it is clear. Otherwise rewrite the code. The “pencil test” checks for inline
documentation. It consists ofreading through the code, pencil inhand, and

then including any notations made as comments in the next revision.

35

-.

‘u

5.3.3 Module Header

Document modules with an identifying header. The following example

gives a general idea of the format; a suggested format for Sandia is provided

in Appendix C. Other information may be added if needed.

/**** ****% ***** *********************************.***************

routine:

description:

environment:

usage:

inputs:

outputs ;

problems:

assumptions:

globals:

calls:

*/

beep (rings)

int rings;

{
int i;

for(i=l

{

beep

activates the terminal bell “rings” times

DEC VAX; VMS 4.1

beep(rings)

rings (Integer: x of times to activate the bell.)
none

none known

terminal has a bell

no global variables are changed

no user routines are called.

/+ number of times to ring bell */

; i<=rings ; i++)

printf(’’\OO7°);

}

3
/** *********************/

5.3.4 Module Separation

In the example above, the module starts and ends with a line of stars.

This is one method ofse”parating modules that appear in the same file. Use

some consistent method to separate modules.

36

‘uJ’

5.3.5 Variable Descriptors

Comment all variables individually. For example:

SUBROUTINE FPUTC(LU, C)

!! THIS IS NOT FORTRAN-77

CHARACTER*1 C !! PASSED cHARAcTER TO SEND OUT

CHARACTER*132 LINE ! ! LINE BUFFER FOR OUTpUT

CHARACTER*7 CCONT !! cARRIAGE cONTROIARETURN VALUE

INTEGER LU ! ! L(JGIcAL UNIT OF OUTpUT FILE

INTEGER LP !! LINE pOSITI(’jN poINTER

CYLINDER_VOLUME= CYLINDER_HEIGHT * PI * CYLINDER_RADIUS ** 2

Ifthe language you use does not allow in-line comments, put the variable

descriptors in separate comment linesas illustrated below:

C VARIABLES:

c c -- PASSED CHARACTERTO SEND OUT
c LINE -- LINE BUFFER FOR OUTPUT

5.4 Data Organization and Libraries

5.4.1 Data Organization

Many programs perform operations on enormous amounts ofdata. Some

scientific programs are now performing calculationson hundreds of millions

ofwordsofdata. Poorly structured programs will lumpmuchofthedata into

large monolithic data structures. For example, FORTRAN programmers
tend to lump data into acommon block ca]led IJankcomrno nbecauseofits

special properties. Such apoorly designed “dataorganizationby default”

makes a program difficult to debug, modify, and maintain. In particular, it

is impossible to communicate only the needed information to a subprogram

(the need-to-know concept) if all the data is lumped together.

Apply the same modularity and design concepts used for developing

subprograms to developing the data objects, Careful design of the modules

in concert with careful study of the information flow will result in natural

groupings of the data objects. Organize the data so these natu<al group-

ings can be accessed individually. This will result in modular data. With

37

‘w

modular data, a module can access only those portions of the data it needs

(need-to-know). This makes checkout, debugging and modification much

easier. If you wish to change a part of the data or some of the data is being

destroyed, you can go right to the code that accesses the data.

5.4.2 Libraries

Don’t reinvent the wheel on every software project; take advantage of

code reusability. Some languages provide features specially adapted to cre-

ate reusable code, e.g., Ada’s packages and generics. A library of general

purpose modules can save much time in coding an application, and reduce

the testing time, On large projects libraries may be necessary. Even in

small projects a library can be useful. Machine dependent routines are good

candidates for libraries.

5.5 Summary

Good code reads from top to bottom.

Use single entry, single exit control structures.

Use white space.

Use meaningful names for labels and variables.

Be consistent when mapping (data typing) variables.

Use a consistent data mapping scheme that yields clear code.

Break programs into page-long modules.

Keep interfaces simple.
Use single entries and exits for modules.

Use multiple module entrances and exits

only if clarity and readability are improved.

Avoid language extensions.

Update comments as code is changed.

Use the telephone test for code clarity.

Use the pencil test for inline documentation.

Use consistent, descriptive module headers.

Separate modules in a well defined manner.

Describe all variables with comments.
Organize all data.
Use libraries for general purpose modules.

38

6 Test.

6.1 Recommended Deliverables

❑ Test Set

❑ Test Set Documentation

❑ Test Results

● Test Set. The Test Set includes “rich” test data and relevant test

procedures and tools to adequately test the application’s response to

valid as well as invalid data.

● Test Set Documentation. The Test Set Documentation (or Soft-

ware Test Plan) describes the test data, procedures, tools, and overall

plan.

● Test Results. The results of the tests should be documented to

identify all deficiencies discovered.

Without adequate documentation of the test set and results, the testing

process may be disorganized, resulting in incomplete application testing and

hampered application maintenance. Inadequate or nonexistent test data and

associated documentation may result in inadequate exercising of changes

made to the application. Without development and use of an adequate test

set, the application may not meet the requirements specification.

6.2 Why Test?

Studies have shown that testing accounts for 30-50’% of the total appli-

cation development effort [SH083], and currently is the primary method of

determining whether a program or system does what it is supposed to do.

While advances have been made in formal verification based on proof tech-
niques, these techniques are tedious and are not easily applied without the

help of automated tools such as verifiers. Additionally, a program’s “proof

of correctness” is proving the provided input and output assertions, which

may not be complete (see Gries, [G R181] for these techniques). For indi-

vidual programmers, testing continues to be the primary, if not the only,

verification technique, and a vital, major part of the development effort.

39

Because of its importance and its potential impact on the development

effort, testing requires careful planning and an understanding of what types

of tests are applicable during the various stages of development. The fol-

lowing discussion expands on these topics.

6.2.1 Types of Testing

There are two basic types of testing: dynamic and static. [1CS82]

Static testing is evaluating a software program without executing it,

whereas dynamic testing is based on execution of the program. Static testing
spans each phase of the software life cycle. An example of static testing is the

design review process. Static testing helps to ensure that the software meets

project requirements and standards, and is of a sufficient level of quality to

serve as a base for test planning. [EVA84] Examples of static testing are in

the design and verification/validation sections of this document.

This section will concentrate on dynamic testing, which seeks to validate

the program’s function (black box testing) and to exercise its various paths

and branches (also known as structure or white box testing). Volume tests

and stress tests may also be useful [K IN84]. Volume tests involve provid-

ing more data than the system will normally handle; stress tests force the

application to operate at its maximum rate. A great deal may be learned

about an application by examining its response to these tests.

Volume and stress tests are applicable in both real-time and “normal”

(delay able) applications. Some problems may not surface until a large

amount of data is entered into the system. One example where volume

testing was useful to one of the authors concerned finding a non-unique

entry in a file index database. The probability of finding an error in the

database schema was increased by introducing a large number of files.

6.2.2 Preparing for Test

An important phase of testing is planning.

Planning should include how to observe results, and compare the results
with desired behavior. The comparison is not always a straightforward task.

The system requirements specification (SRS) can help in this area. The

SRS should provide a complete description of the application’s behavior,

the needed functions, and related constraints.

Conduct module or unit testing.

40

As pieces of the project are completed, these modules should be tested.

(Please note that module and unit are used interchangeably in this section.)

It is easier to locate errors when the number of possible interactions is limited
to a small number of modules. Only after these modules have been debugged

should they be incorporated into the program. This is the basic approach

used in bottom-up testing discussed later in this section. If errors are found

and modifications made, previous tests involving erroneous sections should

be rerun. Testing is truly an iterative process. Therefore, .. .

Test the application early and often.

Problems revealed early in the design process are orders of magnitude

easier and cheaper to correct than problems discovered once the program is

in production. Data structures and algorithms based upon design decisions

are often subtly intertwined. Modifying the application’s design to correct

bugs late in the design process may involve a great deal of algorithm and

data structure modification, which could introduce further bugs.

A vital part of software testing concerns choosing data that will ade-

quately test an application.

The following guidelines discuss how to develop such a test set.

1. Exhaustive testing of all possible input values is not possible for many

programs. Therefore, test data should be “rich”: small enough to be

manageable, yet comprehensive enough to cover the domain of input

values. These “rich” test cases should contain data to exercise as

many functions and traverse as many paths as possible. Minimally,

each statement should be executed once during testing’: Test data

should also deal with boundary conditions.

2. The sooner the test data set is developed, the better. This can serve as
feedback for other phases of the life cycle. For example, requirements

for which it is difficult to formulate test data or determine the expected

output are probably unclear and should be restated.

3. Test data should be documented as to what is being tested, and what

the expected results should be. This set should be maintained for later

use in checking out code modification.

4. Test data should include invalid as well as valid information.

5. Obtain some test data from the user community. Data that is typical
of the application’s ultimate environment should be included in the

test set.

41

6.3 Top-down and Bottom-up Testing
. .

There are two major testing approaches used in subsystem and module

testing: top-down and bottom-up. These methods are normally used in con-

junction wit h top-down and bottom-up software development, respectively.

Top-down testing starts at a high, subsystem level; subordinate routines

are initially dummy routines. After subsystem testing, a module in the next

level in the procedure tree is implemented and tested. This process continues

until all modules in the subsystem have been implemented.

Bottom-up testing is the inverse of top-down; the functions in a module

are tested. Modules are combined into a subset of the subsystem and tested.

This cycle continues until the entire subsystem is built and tested. There

are advantages and disadvantages with each approach. The advantages of
top-down testing are:

1.

2.

3.

Design errors may be identified more quickly, as these errors generally

are inherent in the top portions of the system.

A demonstrable system is available early in the project, which may be

good for morale as well as to prove/disprove feasibility of the system.

Major interface errors may be discovered earlier.

The disadvantages of top-down testing are:

1. It may be difficult to provide dummy routines that still adequately

test the subsystem’s functionality.

2. Test output may be hard to observe - many systems .do not produce

output in the higher levels of the subsystem.

The advantages and disadvantages of the bottom-up approach are the

inverse of top-down testing. It is easier to observe a test’s output, but no

demonstrable working system is available until all the modules are tested

and in place.

There is no one way to test an application. One approach may be suPe-
rior in a particular application, but not in another. A combination of the

two methods (sandwich) may be useful. This approach is predominately top-

down, with bottom-up testing performed on some modules and subsystems.

The development team can use both testing and integration techniques to

their fullest advantage.

42

6.4 Software Testing Stages

Software testing, like software development, should occur in stages. Each
stage is a natural consequence of the previous stage. There are several

distinct phases in the testing process.

6.4.1 Unit or Module Testing

As a module is developed, its functions are tested to verify correct op-

eration. Structure tests (traversing as many paths as possible) should also

be performed. A good rule of thumb is to introduce modules incrementally.

6.4.2 Subsystem Testing

Modules forming a subsystem are tested for correct cooperation and

communication. At this point, an assumption is made about the correctness

of the individual modules. Integration of units into the subsystem may be

done using a bottom-up, top-down or “sandwich” (combination of top-down

and bottom-up) approach. Careful planning is required to coordinate the

development effort so units are available for integration when required.

6.4.3 System Testing

This stage of testing is performed when all of the subsystems are inte-

grated into the final system. Testing at this point focuses on locating design

and coding errors undetected by prior design reviews and walkthroughs.

Additionally, error recovery, throughput, capacity and timing considerations

are examined. The system’s operation is verified against the requirements

specified in the system requirements specification.

6.4.4 Documentation Testing

User guides should be tested for completeness and accuracy. The guides

should be used during the system test phase before the application is turned

over to users for acceptance testing [KIN84]. User guide examples of pro-

gram operation or system function should be tested, and these test cases

should be made part of the total test data set.

6.4.5 Acceptance Testing

Acceptance testing involves testing the system with “real” data by the

43

organization who will be using the system. (Up to this point, the testing

is usually performed by developers.) The application should be installed in

the production environment for this stage of testing.

6.5 Testing Real-Time Systems

Programs in a real-time system present challenging testing problems

that demand a higher testing standard. Real-time systems are those sys-

tems whose processes must respond to events under time constraints. If

the system’s response is not timely, information may be lost. Due to the

types of applications for which real-time systems are developed, software

errors can lead to disastrous consequences. Thus, the nature of real-time

functions and their associated complex time-dependent interactions present

additional testing problems involving more stringent timing and storage con-

straints. More intensive testing is needed to achieve a reliable operational

status.

The attributes of real-time systems that complicate the testing effort can

be summarized as follows.

1. Magnitude of the programming effort - Many real-time systems

have a very large number of programs that have to be interconnected

and tested.

2. Repeatability - Because of slight differences in timing, the same se-

quence of test case inputs, phased slightly differently each time, may

result in different outputs.

3. Equipment interaction - Many real-time systems involve multiple

processors that must exchange information. Development of the soft-

ware for the differing processors typically is performed by machine

oriented groups of personnel who work in semi-isolation to produce

their machine peculiar subsystems. As two or more subsystems are

tested and integrated, the lack of communication may be felt.

4. Program interaction - Several programs will typically share the

computer at the same time. Without strict control of interfaces, sig-
nificant errors can result because of unplanned or erroneous program

interaction.

5. Programming complexity - Due to timing and execution constraints,

real-time systems are frequently developed in assembly language. Soft-

ware development is much more complex because of these constraints.

44
,,--

7--

.

.

Extensive testing is required to eliminate programming errors. In ad-

dition, real-time systems will usually contain more decision points than

batch oriented or scientific computation programs.

6. Simulation - Another consideration in the testing of real-time sys-

tems involves the credibility of testing in an environment other than

the one in which the system will eventually operate. In many in-

stances software development is done on “cross-compilers)) or “cross-

assemblers,” where one processor produces executable code for a differ-

ent processor. Module testing is often done on software which emulates

the hardware environment in less than real-time, s: timing problems

are sometimes masked. Testing of real-time systems is normally first

performed at a test facility using simulated input ‘data before moving

to the operational site. An extra effort is necessary to simulate with

reasonable exactness the operating environment and “live” input.

7. System operation - A final attribute which complicates testing of

real-time systems occurs after a system has been implemented. After a

real-time system is operational, it becomes especially difficult to isolate

and correct errors, thus the importance of adequate pre-installation

testing is amplified.

The following phased approach could be used in conjunction with the

testing methodology described elsewhere in this section to facilitate the test,-

ing of real-time systems. This approach is oriented around the validation of

subsystems. Each subsystem consists of a set of programs that accomplish

a single processing function. The testing begins with the exercising of in-

dividual subsystems one at a time and then progresses to testing multiple

interacting subsystems.

● Phases 1 and 11 - Unit and subsystem testing (covered previously in

this section). Because of the complexity level and asynchronous na-

ture of real-time systems, fully testing new features and changes for

undesirable side effects is very important.

● Phase III - Test the entire configuration (system testing). Simulated

inputs are used to test more than a single subsystem at a time in order

to test the subsystem interaction. A major objective of this phase is

to stress the system and to determine its throughput capacity. This is

accomplished by loading the system beyond its required capacity and

observing whether the system takes the proper emergency measures.

45

-.

Also, invalid data or messages are input to observe whether the system

properly handles or rejects the invalid data or condition.

. Phase IV - The phase consists of a trial operational period at the oper-

ational site. This is required because it is very difficult (impossible) to

create a simulated data environment that is identical to the operational

environment and which can test every live data input condition. This

testing phase is also an opportunity to conduct user training. This pe-

riod concludes when the incidence of errors is reduced to an acceptable

level and the system performs smoothly.

6.6 Test Documentation

The quality of test documentation can dramatically affect later stages of

the software life cycle, particularly maintenance. Determining the amount

of test documentation necessary for a particular project can be answered by

the following questions: What would be of interest to me:

● if I were managing a software project, and announcing its completion?

. if I were a new member oj a “mature” sojtware project?

Unit testing normally is conducted by the program unit author. A test

log during this phase of testing may be useful for later test phases.

System and acceptance testing requires documentation of the tests. Doc-

umentation may include a test plan, test design specifications, test, case spec-

ifications, test log, test incident report or test summary report. The test

case specification may include a test matrix listing application functions and

paths and the data ~ets that test those features. General procedures and

tools such as code profilers, test case generators, and driver programs useful

in testing the application should be documented. The coding and documen-
tation guidelines pertaining to structure, white space, names, and in-line

documentation presented in subsections 5.2 and 5.3 should also be applied

to test procedures and test data sets wherever possible to improve readabil-

ity and maintainability. For additional information on test documentation

refer to [SSGV2] and [IEE83t].

6.7 Debugging

Although debugging and testing are terms that are often used inter-

changeably, they are really distinct processes. Testing determines whether

errors exist in an application; debugging diagnoses and fixes the errors.

46

The most primitive method of debugging is to print out the contents

of memory at a particular time, e.g., after a program abort or exit from a

particular module. These are difficult to use because a variable’s memory

location must be identified, machine representations must be interpreted and

the exact state of some machines (vector, multiprocessors) may be hard to

define. If debugging must be done in a primitive environment, then you may

want to design your modules with print statements of critical quantities.

These print statements can be used or bypassed depending on an input

parameter or enabled using compiler options.

There are several tools for static postmortem analysis. These tools print

variable values after the program aborts. They are often symbolic in that

they tell you the variable name and its value. DEBUG in the CRAY COS

and Post Mortem Dump on CDC NOS operating systems print the variable

values in the module that aborted. AUTOPSY on CTSS tells you where the

program aborted and tries to tell you why. DDT on CTSS and DEBUG on

VAX/VMS allow the user to look interactively at variables.

Interactive debuggers allow the user to trace execution, to display vari-

able values, to stop the execution at breakpoints and generally to monitor

and interrogate the state of a running program. A good symbolic inter-

active debugger can cut the debugging time by an order of magnitude. A

symbolic interactive debugger allows you to refer to the variables by their

names rather than their memory locations. The following table lists some

interactive debuggers available on machines used at Sandia National Labo-

ratories. Any serious software developer should become expert in the use of

a symbolic interactive debugger.

-(j,,: Available on:

DDT CTSS

DEBUG ELXSI

DEBUG VAX/VMS

DBX UNIX 4.2

DEBUG IBM PC (Professional FORTRAN)

CYBER Interactive Debug CDC NOS

Table 3: Example Interactive Debuggers

47

,— ~

7 Operation and Maintenance

7.1

●

●

●

-.

Recommended Deliverables

❑

❑

❑

Maintenance Documentation

Training Plan

User’s Manual/Operating Procedures

Maintenance Documentation. Well documented code and the soft-
ware design document provide the backbone of maintenance documen-

tation and the starting point for determining training needs. Every

software professional has been exposed to inadequately documented

code, usually when trying to trace out the source of a problem.

Training Plan. The preparation of a well thought out training plan

is an essential part of bringing a system into smooth operation. If the

people, documents, and training techniques are not considered in the

early planning for a new system, resources may not be available and

training will be haphazard.

UFer’s Manual or Operating Procedures. A user’s manual is

organized to contain practical information for the individuals required

to put the software into action. Depending on the size and type of

system, operating procedures may be required as a separate document

to cover management of the logical and physical components. Without

a properly prepared user’s guide or operator instructions, either the
time of the user will be wasted determining what to do, or the system

will be inappropriately used, or both.

People are the key ingredient in any system. Providing adequate educa-

tion initially, and on a continuing basis, is absolutely essential if a system

is to achieve its objective. The alternatives for providing the training may

be open to choice, the need for training is not. Depending on the project, a

few pages of information, or a wide range of documents and approaches may

be necessary. This chapter will present broad coverage of ideas for system
operation and maintenance. /’

48
w

7.1.1 Who Needs Training?

Three categories of people must receive some type of training in a new

system.

The users are those who obtain a service from the software. These cus-

tomers of the system may need an action, a computation, or a printed page.

This is the group that should have been represented in the analysis activity

of the requirements phase as needs were identified. These users now must be

made aware of what the system requires, what it provides, and how it meets

the identified needs. Acceptance testing is not complete until the customer

is able to use the system to perform the design intent. Training can be a

two-way street. The people using the software will provide some excellent

feedback for system improvements.

The operating personnel are the second category. These are the peo-

ple who will manage the system. They are involved with preparing input,

processing data, and operating the logical and physical components.

A third group requiring training is the maintenance programmers. Even

if the organizational philosophy is that the developers stay with the system,

normal attrition will soon bring new people to the staff. Well documented

code and the software design document provide the manuals for this training.

A discussion of the need for in-line documentation appears in the chapter

on implementation. Documentation tells how the design was translated to

code and shows the expected result to be verified by testing. The close

association of documentation with the source code has the advantage of

making a complete story available in one place for maintenance personnel.

If the system is to receive the same level of support as the developer

would give it, there needs to be a planned program for teaching subse-

quent maintenance programmers the basics of the business that the analyst

learned when the project was initially studied. Too often it is assumed that

the programmer understands the system simply because he knows how to

make changes to the code. Maintenance programmers need information on

the interrelationship of problems and needs that sparked the development

project. They need to understand the technical, human, and organizational

parts of the operational environment.

7.1.2 Training Approaches

It is easy to calculate the costs of training. The time and materials used

fit the budget mold. More difficult to calculate is the cost of insufficient

49

training. If a system is not utilized due to lack of understanding, the cost

of the system is wasted. Probably the greater loss is the failure to make use

of available information. Training is not something tacked on to the end

of a project. The preparation of a well thought out educational plan is an

essential part of the system implementation process.

To successfully provide people with the training required for the use and

operation of a new system, it may be necessary to utilize several different

approaches or combinations of them. These approaches may include:

. Group Instruction - This can be the best way to reach many people

and provide them with an overview of the system.

. On-Line Help - The people who participate in group instruction

may not use the system frequently. Through comprehensive on-line

help this group can obtain satisfactory service. Another approach is

the use of merlus to move to the desired action. Menus are a burden

to the frequent user, so there also must be a by-pass for the expert

user.

. Procedural Training - In this method the individual is provided

with written procedures describing the job tasks. This booklet may

include a formal description of the system with detailed attention given

to the outputs. To round out this training the individual would have

an opportunity to ask questions of a trainer alone or in a group session.

. Tutorial Training - This technique provides personal training and

may be necessary where many new ideas are introduced. It can provide

one-on-one training for new user, operator, or program maintenance

personnel. Although this can be fairly expensive, it assures the trainee

will have a satisfactory understanding of the system.

. Simulation - A simulated work environment, using the data, proce-

dures, and equipment involved, provides a medium for the individual

to perform the proposed activities until a satisfactory level of compe-

tence is achieved. This technique would be used for operating person-
nel.

,..

. On the Job Training - This is the usual method of training op-

erating personnel. The individual is given simple tasks and specific

procedures to start out. As these tasks are mastered, additional steps

50
u

are assigned. Although it has the appearance of providing immediate

results or production, it can be a long and expensive approach.

. Information Center - The primary objective is to train existing per-

sonnel. However, training is rarely a one-time effort. Careful planning

can result in a meaningful training mechanism which can be utilized

by the organization on a continuing basis. This approach will justify

the investment in more expensive aids and programs. The tools can be

incorporated into an Information Center where consultants teach the

users to help themselves. At such a center the user can get as little

or as much training as is needed, and can get it immediately. The

idea is as applicable to accounting and purchasing systems as it is to

engineering information systems.

. Train Trainers - Another way to build for future training require-

ments is by training trainers. This will provide the select group of peo-

ple who can deal with day-to-day problems. It creates more experts

for the users or operating people to consult. It gives the system per-

manency by providing for employee turnover without making smooth

performance dependent on the availability of the original analysts and

programmers.

Regardless of the training approach selected, the effort should begin with

a presentation of the overview. The overview can be the introduction of a

document, the top screen of the menu set, or formal class presentation.

Often training begins with a single task and then moves from task to task.

The individual can better relate to the significance of each task and the

process required if it is int reduced by a system overview.

7.2 Manuals and Procedures

A user’s manual is defined in NNWSI SOP-03-02 [SOP85] as “a manual

which allows a peer to understand the results produced by the software,

to run the software, and to install it on an appropriately equipped com-

puter.” This comprehensive definition accompanies a requirement for com-

plete maintenance documentation which contains the theory of the original

work, an in-depth explanation of the code, user/operator instructions, and

a broad set of test problems. Certainly complexity, hazard, and liability are

circumstances which would dictate the need for this type of coverage. How-

ever, the usual case is that the user’s manuals are targeted to a particular

level, group, and coverage.

51

/----

User’s Manuals and Operating Procedures are one way for management

to exercise control over the activities of the organization. The purpose is

to uniformly communicate what activities are to be performed, when, how,

and by whom. The primary use of these documents is to assist in training.

They also promote standardization and provide a guideline for system audit.

The specific content of each procedure depends on the activity it describes.

In general the following questions should be answered:

● What activity is being described?

● Why is the activity performed?

. Who must perform the activity?

● Where is the activity performed?

● When is the activity performed?

. How is the activity performed?

An excellent format for writing procedures is the Information Mapping

Method (a registered trademark of Information Mapping, Inc.). Classes in

the use of this method for report and procedure writing are regularly held

at Sandia. This is the method now used in the preparation of the Sandia

Laboratories Instructions (SLI’S). Information Mapping uses the principles

of how the human mind organizes information. The heart of the method

is a component called the Information Block, which replaces the traditional

paragraph. Each Block has a label that reflects the purpose and content of
the Block. Standards for labeling, graphics, and formatting Blocks are an

integral part of the method.

In compiling manuals, consideration should be given to providing a flex-

ible format for content and update. If a user has no need for a complete

set of system procedures, the manuals at a specific location should contain

only the required procedures and an index to the complete set. A simple
numbering system should be used to make it easy for users to update their

holdings. Use of a loose leaf binder promotes both selectivity in content and

ease in filing replacement pages. Weapon manuals are governed by detailed

specifications for their construction, and can be a source of ideas for manual

preparation.

52 .—.

‘w

7.3 Conversion

Many software developments at Sandia have sought to automate man-

ual methods or were motivated by advantages inherent in new technology,

Conversion from an existing system to a newly developed system presents

some interesting challenges. A primary concern in planning for training is

the nature of the system being replaced. The success of a well designed

and properly developed system may depend on how well the conversion is

executed. When a new system produces inaccurate information, it can leave

a mark that remains long after the problem is solved. The conversion must

be planned carefully and. woven into the training plan to avoid a credibility

gap.

7.3.1 Conversion Preparation

Files are constructed during module and program testing to exercise the

system without risking functional data. In the last stages of program testing

a specific conversion plan for the existing data is prepared. It identifies

any special start-up procedures, the schedule for file creation, acceptance

criteria, and transfer of operating functions. It will be necessary to create

files by collecting and organizing data in a specific format on a given storage

medium. It will also be necessary to convert files by taking existing files

and modifying them in format, content, and storage location. Elaborate

control procedures may be required to ensure the integrity of the converted

data. Assuring that all affected parties are aware of the procedure is a vital

communications task.

A major system will probably involve three types of conversion: equip-
ment, data processing method, and procedural. The change to improved

equipment may not involve changing the logic of the application, but it will

mean putting the logic in a coding structure which can be processed on

the new computer. The data processing method can change from a manual

or tape handling process to a terminal-controlled or computer-to-computer

process. A procedural conversion can involve changing both the kinds of

activities and the sequence in which the activities are performed.

7.3.2 Conversion Approaches

#--

The three basic approaches for accomplishing the conversion to a new

system are direct, parallel, and modular.

53

-,

e’

Direct conversion would be most applicable when the design of the new

system is drastically different from the old system and comparisons between

systems would be meaningless. This approach would also be used if the new

system is small or simple.

Parallel conversion is the simultaneous operation of the old and new

system. The outputs from each system are compared and reconciled. This

approach provides a high degree of protection from a system failure. The ob-

vious disadvantage is the cost of maintaining two systems. This means that

the plan should call for periodic reviews with users and operating personnel

so that reasonable criteria are set for stopping the dual systems, either to

rework the new or to cut over to it.

Modular conversion refers to implementation on a piecemeal approach.

This allows a partial commitment without affecting the entire operation.

The piece could be the whole system in a particular locality or a part of the

system installed across the board. This has the advantage of minimizing

the risk of failure, but it is not always feasible because of the system, the

organization, or the time it takes to complete the installation.

7.4 Maintenance

One of the realities at Sandia is that application programs, e.g., scientific

simulation codes, may evolve from other codes. Such programs can become

unwieldy and difficult to maintain. Maintainers are adverse to removing

unused code because they fear someday it may be required, or they are ap-

prehensive of unseen coupling, or they are following the homespun wisdom,

“If it ain’t broke, don’t fix it.”

How to handle maintenance? Carefully – but apply these guidelines:

● Conduct an analysis phase (in lieu of the requirements phase) to:

— determine what modules and documentation will be affected.

establish change control procedures.

— establish standards, practices, and conventions.

. Where possible, re-write affected modules to bring them into compli-
ance with the agreed upon standards, practices, and conventions.

● Where possible, follow the phases documented in these guidelines

(analysis, design, implementation, test, operation and maintenance).

L--”

Section 8.5 provides a checklist for maintenance programmer responsibilities.

54

8 Configuration Management

8.1

●

●

●

8.2

Recommended Deliverables

❑ Configuration Management Plan

❑ Baseline Table

•l Change Table

Configuration Management Plan. The Configuration Manage-

ment Plan lists all modules used by the project, module locations,

personnel responsible for controlling changes and change procedures.

Baseline Table. The Baseline Table lists modules and versions in

the project’s baselined system.

Change Table. The Change Table lists all changes and enhancements

made to the modules. Additional update supporting documents reflect

changes and enhancements made to the system.

Why Configuration Management?

Changes must be managed right from the beginning of a project, whether

developing a new system or modifying an existing one, working with a large

team or alone. Any project evolves through additions to the system re-

quirements specification document, the design reviews and changes in the

structure of the design, coding development and testing, module testing,

system testing and requests for changes and enhancements. Configuration

management is the process of controlling these changes and enhancements.

The advantages of configuration management include

●

●

●

●

protecting the interests of both the software developer and the end-

users

providing continuity to a project even as personnel change

identifying a baseline which contains code and supporting documents

at a specific point in time

validating new baselines by independent audits.

55

u

A baselined system is the set of modules that has been system tested during

development or is being used by the end-users. A configuration management

plan describes the mechanism for establishing a new baseline and certifying

the new baseline.

8.3 What 1s Configuration Management?

Configuration management is the management of changes in the soft-

ware (and associated documentation), and is applicable to the development

activities as well as the maintenance activities. Managing changes to a soft-

ware project may be easier for a single individual than for a team of people.

However, being the sole developer and maintainer of the project has its pit-

falls, the chief one being the tendency to ignore configuration management

because all changes are funneled through that single individual. And, as the

project expands or stabilizes, the individual must remember many details

such as what changes or enhancements were made and why, which end-user

has which version, which version of the modules is the latest, which versions
were in the previous release of the system.

During the design phase, a project leader should implement a config-

uration management plan. This act forces discipline into the project by

controlling changes. A configuration management plan may cover one or

more phases of the software life cycle. Consequently, a project may have

one or more plans or a plan with one section per phase. Before releasing the

system to the end-user, the software development organization drafts the

configuration management plan for maintenance, which is then approved by

the end-user’s organization, the QA organization for critical software, and

other pertinent groups.

A configuration management plan should:

● identify the software files and the supporting documents;

. define the methodology for assigning and changing version numbers
for both software and documents;

. define a procedure for each of the following activities:

. a user requesting changes or enhancements

– a programmer implementing changes to the software during the

development or maintenance cycle

-.

— a librarian integrating software into the library

56 —

w

●

●

●

●

illustrate the change or enhancement form and the response, disposi-

tion, or resolution report and explain the items listed on the forms;

record release dates for new versions of software and documents and

state the support termination date for older versions;

describe audit controls for checking compliance with the plan;

establish a procedure for archiving backups of master and versions,

documents, and test cases.

The plan may need to address other items, dependent on the nature and

scope of the software and the end-user’s requirements. A more detailed,

comprehensive guide can be found in the IEEE Standard for Software Con-

figuration Management Plans [IEE83c].

Documenting changes made to modules and uniquely identifying each

module is a must for everyone. Anyone can easily remember the minor

changes made today, yesterday, or even last week, but six months later?

The easiest place to document any change is in the source code itself. In

addition, a change table is a useful tool for tracking unique modules by

version numbers, dates, and the changes or enhancements made. The table

is also called a project log, logbook, or a change document. Such a table

should contain the module name, its version number, date of change, the
responsible programmer, the locations of the change and a summary of the

change. Table 4 provides sample entries from a change table.

A baseline table records each version of the system with all the mod-

ules that have been released or baselined. The table records the modules

and their unique identifications, the date released, and the personnel who

released the module. To identify each module in a released system requires

accurate recordkeeping. The next generation of the system contains the

latest changes or enhancements on some of the modules. After testing and

verification of the test results, it will become a released or baselined sys-

tem. Now, suppose some bug is found in the newly released system. It is

desirable to find the version where the bug was introduced. Then, the bug

can be corrected in the appropriate context or if possible, the system can

be rebuilt temporarily with an older version of the module prior to the bug.

An example of a simple baseline table showing five entries is in Table 5.

57

NCDRILL Log System

Version Date Person Program Subroutine

1.002 09/10/85 K.T. Wilson RETRNCINF Put.land

--Increase the format size from F1O.4 to F12.4 for the

x and y location on the error messages

1.101 10/25/85 K.T. Wilson RETRNCINF FIND_IDX,
GET_IDX_TABLE_ENTRY

--Increase maximum length of custodian field of the

file index table from 2 characters to 3 characters

1.430 01/31/86 L. Jones DRILLING Get_title,

Punch_driver,

Append_comment,

SNLA_write_holes,
Tool_spindle

--Lab requested a set of comment lines be added

to the drilling holes file. The first line has the

unique artwork number. Subsequent

tool number and the drill size.

lines list each

T’able4: Change Table Sample

Updating all the supporting documents isa very necessary part ofany

system. After every change or enhancement, the list of supporting docu-

pents should be reviewed to determine the impact of the change. A small

change can easily require extensive editing and additional explanations in

any or all supporting documents.

8.4 Change Control

When a system is baselined, all the controls for changes must be rig-

orously enforced or else the system can easily degenerate into an unmain-

tainable, unreliable system. This does not mean that quick, emergency

changes are not allowed. Rather, emergency fixes must be implemented as

58

CONFIGURATION

Date Person

11/04/85 K.T. Wilson

01/20/86 K.T. Wilson

08/12/85 L. Jones

02/04/86 K.T. Wilson
02/06/86 K.T. Wilson

ON THE CAD NETWORK

Software Version

CHECKNC.EXE 1.102

DRILLING.EXE 1.420

GERMASKS.EXE 1.010

PANELPTS.EXE 1.000

PANELPTS.EXE 1.100

Table5: Baseline Table Sample

documented in the configuration management plan. Commenting or using

distinctly formatted lines can easily identify the emergency fixes throughout

the source code. Later, the problem isrouted through the formalchange,pro-

cedure for proper analysis and appropriate action and a permanent change.

Aprecise method governing changes to the software should be thoroughly

documented and distributedto all interested personnel and end-users. The

project should assign one person to serve as the librarian. This isa necessary

function and should be apart ofany project. Smaller projects will not have

a full time librarian, but the job must be done. The librarian controls

all baselined versions of the system and adds the new modules or revised

modules to the latest to-be-released system. Nobody else has the authority
to add modules to a system. Ideally, thelibrarian issomeone other than the

code developers, a luxury that may not be available to small projects.

A project may have a change control board reviewing and approving the

change or enhancement requests. The board may perform the independent

audit for validating the modified software before that system is baselined.

The board may have supervisors, quality assurance (QA) and other technical

experts (including the project leader), and end-user representatives, depend-

ing on the nature of the project and the requirements or design specification

documents. The configuration management plan defines the board’s com-
position and functions. Fairley [FA18s] discusses the change control board

and its functions in detail.

Change control can be done manually by adhering to strict record-

keeping practices using the change table and the baseline table. Under

59

,-,

a manual system, the source code modules are still maintained in an elec-

tronic file. Start every such source code file with a header of introductory

comments. This prologue is different from a module header as described in

subsection 5.3. The source code prologue starts a file (which may include

several modules). Include the following information in the header:

Name of Author:

Original Version Date :

Name of Revisor:

Revision History:

Name of Source Code File:

Names of any Include files:

Compiling Information:

Some of the above information may be inapplicable in some programs. In

such cases use comments that are informative.
Several software tools are available for building libraries and tracing

changes in the software and supporting documents. A brief survey of com-

puter systems (Table 6) reveals some of the software packages available.

Hardware Software Tool

CD(3 UPDATE

CRAY UPDATE

IBM PC/DOS (none known)

IBM mainframe LIBRARIAN, PANVALET

VAX/UNIX SCCS, MAKE, RCS

VAX/VMS DEC/CMS, DEC/MMS, EDCS, Softool
VAX/VMS and others HISTORIAN

Table 6: Change Control Software Tools

Using prepared forms to request changes or enhancements to the soft-

ware is the best method for controlling the changes to the software. At least
the problem can be evaluated and the action and priority of the change

documented. For forms to be effective a user should receive some response,

either written or oral. Both the change or enhancement request and the
evaluation and disposition report are under control of the responsible orga-

nization. If resources permit, problems or change requests may be reported

60 ,-.

.

.

by using on-line forms. A database may be established that logs the prob-

lems and records the pending status and subsequent resolution. The first

two entries in Appendix F illustrate change control forms used by Y-12

(Martin Marietta) [EDW85]. The third entry is an example of a form used

at Sandia.

8.5 Maintenance

Most software engineering references agree that two-thirds of the lifecycle

of software, in both time and resources, is spent on maintenance. Many

Sandians can bear witness to the fact that foryears they have worked only

on maintaining software, never creating a software project from scratch.

Software maintenance is the process of working with operational software

to correct errors and to provide enhancements. Software maintenance is of-

ten the most challenging job in the software life cycle when it should be the

easiest. If guidelines such as those in this document have been not been con-

sistently enforced during the development of the software, the maintainer’s

job is difficult.

Software changes or enhancements to a baselined module should be made

only after careful analysis and approval by the project manager or the change

control board. After the change is authorized, the following checklist can be

used to assign maintenance personnel responsibilities:

o implement changes to the code

❑ update the internal documentation of the code

u validate the test sets in the baseline

❑ design new test cases as necessary, add the cases to the existing
test set, and record the results on the new baseline

❑ revise the supporting documents (requirements, design specifica-

tions, test plans, user’s manual, etc.)

❑ distribute the updated version of software and documents to the “

end-user sites and update the configuration control records on each

site.

61

9

9.1

●

●

Verification and Validation

Recommended Deliverables

Cl Formal Reviews

❑ Informal Peer Reviews

Formal reviews. Formal reviews should be held at the end of each

phase in the software life cycle. The formal reviews should assess

the compliance with previous life cycle phase requirements and prod-

ucts; satisfy the standards, practices and conventions of the phase;

and establish the proper basis for initiating the next life cycle phase

activities. [IEE85]

Informal Peer Reviews. Informal peer reviews of the workprod-

ucts (z. e., the documents or code) should be used during each phase

of the software life cycle. The informal reviews should address the

same topics as the formal reviews, but in much more detail and more

frequently.

Recommended Deliverables for validation testing are listed in section 6.

9.2 Why Verification and Validation?

Verification and Validation activities are part of the quality assurance

activities necessary to provide adequate confidence that the item or product

conforms to established technical requirements [IEE83g]. Requirements are

discussed in section 3.

Verification is the process of determining whether or not the products

of a given phase of the software development cycle fulfill the requirements

established during the previous phase [IEE83g]. The phases in a typical

software development cycle are shown in Figure 1.

Validation is the process of evaluating software at the end of the soft-
ware development process to ensure compliance with software requirements

[IEE83g]. Careful planning, design, and implementation substantially im-

prove the probability of meeting the requirements. But, there is no guar-

antee the requirements will be satisfied. For example, you will not know if

a real-time system will be fast enough without actually running it. Careful

62

testing, exercising and debugging of the actual software is required to val-

idate the software. Refer to section 6 for more information on testing and

debugging.

Boehm [FA185] phrases the definitions as follows:

● Verification: “Are we building the product right?”

● Validation: “Are we building the right product?”

Note that verification activities can be applied to all phases of the soft-

ware life cycle whereas validation activities are applied to the software pro-

duced by the implementation phase.

Verification and validation are used to determine workproduct confor-

mance to specifications, detect defects as early as possible and improve the

quality of the workproduct. Verification and validation activities use groups

of people to analyze the workproduct and uncover defects. A software im-

plementor can use systematic testing and debugging techniques to validate

modules. Systems and subsystems can be validated by using formal valida-

t ion and acceptance testing.

Verification and validation activities should be used as early as possible

in a project. The earlier a defect is identified, the easier and cheaper it is to

correct. An inconsistency between two models is much easier to correct in

the design phase than in the testing phase. A defect in the coding is much

easier to correct before copies of the software have been distributed.

9.3 Reviews and Audits

Reviews and audits use knowledgeable groups to uncover defects in a

work product. They are used throughout the software life cycle. The reviews

may be formal or informal. Formal reviews or audits are important project

milestones. They should be formalities that demonstrate that a major phase

of the project has been completed. Informal reviews occur throughout the

life cycle. They are the “inch pebbles” that build milestones.

9.3.1 Formal Reviews

Formal reviews or audits are formal presentations for the purpose of

assessing consistency and completeness of the workproduct. The reviews

should assess the compliance with life cycle phase requirements and prod-

ucts; satisfy the standards, practices and conventions of the phase; and

63

‘d

establish the proper basis for initiating the next life cycle phase activities.

[IEE85]

Formal reviews involve authors of the workproduct and people who are

not authors, such as users, management representatives, quality assurance

representatives and consultants. A formal review should be held at the end of

a phase in the software life cycle, e.g., requirements specification (described

in subsection 3.4), design (subsection 4.7), implementation, etc. Formal

reviews can also be applied to critical parts of a project, e.g., hardware-

software interfaces. A formal audit or review should be a formality that

demonstrates the informal audits and reviews have done their jobs, but at

the same time provides management representatives a chance to review and

provide comment.

9.3.2 Informal Reviews

Informal reviews and audits are used by the development team through-

out the software life cycle. Members of the development team and others
such as users, consultants and technical experts participate in the informal

reviews. Management representatives do not participate in the informal

reviews. The workproduct author uses a knowledgeable peer group to re-

view his workproduct to assess compliance with items such as requirements,

specifications, baseline standards, procedures, codes and contractual and li-

censing requirements. Informal audits and reviews are much more detailed

than formal reviews. Informal reviews look at the workproduct line-by-line

and try to identify individual defects. Walkthroughs and inspections are

two procedures for informal reviews that are widely used in the software

engineering community and will be described in the following subsections.

The informal reviews described below are consistent with the notion of

egoless programming espoused by Jerry Weinberg [W E171]. Egoless pro-

gramming is the concept that workproducts are the responsibility of the

entire group irrespective of who is the author or cognizant person for the

workproduct. Informal reviews differ from the strictest interpretation of ego-

less programming because they may use people from outside the software

development group.

The next two subsections briefly describe two types of informal reviews;

walkthroughs and inspections. Walkthroughs have been used for “many years

and are well described in many software engineering books [SOM85]. Inspec-

tions are similar to walkthroughs but are more formal. They are newer and

there is less information in the open literature [ACK84], [FAG76]. Because

“--’”

.

64

/-+

of this, inspections will be covered in more detail than walkthroughs.

9.3.3 Walkthroughs

Walkthroughs have been used for several years to systematically examine

workproducts. The material being examined is presented by a reviewee and

evaluated by a team of reviewers.

A walkthrough team usually consists of a reviewee and three to five

reviewers. One of the reviewers may be designated moderator. The moder-

ator’s job is to keep the walkthrough focused on identifying defects. Team

members may include the project leader, other members of the project team,

a representative of the quality assurance group, a technical writer or other

technical persons who have an interest in the project. Customers and users

may be in the walkthroughs during the requirements and preliminary design

phases, but are usually excluded from subsequent walkthroughs. Managers

should not attend walkthroughs.

The workproduct should be distributed to the reviewers before the meet-
ing so they will have time to become familiar with the workproduct before

the meeting.

A walkthrough tries to discover defects by examining the product line-by-

line. The reviewee is normally the author of the workproduct being reviewed.

The reviewee reads and explains the workproduct and the reviewers try

to identify defects or inconsistencies. Defects are not resolved during the

session. It is the reviewee’s responsibility to correct the defects. A follow-up

meeting should be used to inform reviewers of the problem resolution.

Successful walkthroughs depend on establishing a positive, nonthreaten-

ing atmosphere for the session. The workproduct is being reviewed, not the

reviewee. The moderator should keep the walkthrough focused on finding

defects and not allow personality conflicts and minor problems to get out of

hand. Set a time limit of less than two hours. Walkthroughs should never

be used for employee evaluations.

More information on walkthroughs is available in [SOM85] or in the

videotape [SDS].

9.3.4 Inspections

An inspection is a peer review process for identifying defects in a work-

product. A peer group of three to six inspectors looks at a work product

line-by-line, and identifies and categorizes defects. Inspections are similar

65

.-

to walkthroughs, except inspections are more formal in structure and docu-

mentation. Inspections have formal entrance and exit criteria. Defects are

classified according to type, class and severity. Documentation is generated

for the individual inspection work, group work and follow up. The addi-

tional documentation allows trends in defects to be spotted. These trends

may be related to the language used (e. g., argument passing errors in FOR-

TRAN) or programmer specific defects (e. g., programmer B makes more

typing errors than any other type).

Inspection Meeting Preparation

An inspection must have well defined entrance and exit criteria. The
entrance criteria for a software product may be a clean compilation and a

successful pass through a standards and interface checker. The exit criterion

normally is no defects.

Once an author believes his product satisfies the entrance criteria he

(or someone in authority) selects an inspection moderator and completes

the Inspection Profile form (Appendix E). The moderator’s job is to check

the workproduct for the entry criteria, decide whether or not to hold an

overview, select the other inspectors, schedule the overview, schedule the
inspection meeting, and be responsible for completing the Inspection Man-

agement Report and Inspection Summary Report (Appendix E).

An overview meeting may be required to provide the inspectors with

needed background information. This presentation is normally given by the

author.

The inspectors prepare for the inspection meeting by studying the work-

product and completing the Inspection Preparation Form. The author col-

lects all material required for the inspection and distributes it to the inspec-

tors. Each inspector should develop an understanding of the workproduct,

note places where the understanding is incomplete and note places where

the workproduct appears to have defects. Inspectors should defer detailed

analysis and classification of defects until the meeting. The amount of time

spent in preparing for the inspection should be approximately equal to the

planned meeting duration. Each inspector should complete the Inspection
Preparation Log (Appendix E).

inspection Meeting Activities

Defects are identified and classified in the meeting. The meeting should

66

have a well defined time limit that should not exceed two hours. The moder-

ator reviews the inspectors’ Preparation Logs and should hold the meeting

only if the inspectors have adequately prepared for the meeting, The meet-

ing should be postponed if the preparation time is insufficient.

Each participant in the inspection meeting has a well defined role. Ev-

eryone is an inspector. Some of the inspectors also have the duties of mod-

erator, reader and recorder. The moderator and recorder may be the same

inspector. The moderator must be able to guide the meeting, understand

the goals of the meeting, and be an objective party. The reader is NOT

the author. The reader paraphrases each “line” aloud for the group. The

inspectors interrupt the reader with questions and concerns, and identify

defects. The inspectors do not correct the defects, as this will be the au-

thor’s responsibility. The recorder documents the defects in the inspection

Defect List. The author is also an inspector. He is an extremely important

inspector because he knows the most about the workproduct history and

structure. He should be responsive to questions and should not be defen-

sive. Using a reader that is not the author is an important application of

the egoless programming concept.

Defects are handled in a well defined manner. Defects should not be

corrected during the inspection, although trivial defects such as typing er-
rors may be resolved. Defects are categorized depending on the particular

workproduct. In general, the type, class, and severity are defined. The de-

fect type for a software product may be interface, data, logic, input/output.

The defect class for a software product may be missing, wrong or extra. The

severity may be major or minor. For a more complete discussion refer to

[ACK84], [FAG76], or the videotape [FOW85].

Inspection Meeting Follow-up

At the end of the meeting, the Inspection Defect List is reviewed and

the workproduct disposition is determined. If the workproduct satisfies the

exit criterion, then no rework or re-inspection is needed. If the exit criterion

is not satisfied, then the group can decide if a rework or re-inspection is

needed. If the defects are minor, the author may correct them and meet
with the moderator. The moderator will check the rework and determine if

the exit criterion is satisfied. If the defects are not minor, another inspection

meeting may be required.

Besides completing the Inspection Summary, the moderator is responsi-

ble for the inspection meeting follow-up. He may have to verify corrections

67

,,-.

for a rework.

The documentation is a very important part of the inspection process.

By documenting and classifying defects, trends may be identified and statis-

tics developed to guide future development efforts. Only the Inspection

Summary is available to management. The other documents are used by

the authors and their project leaders.

The Inspection Forms in Appendix E are for software inspections. In-

spections can be applied to other types of workproducts such as program

input decks or documents. The forms in Appendix E can easily be modified

for different types, categories, and severities.

9.4 Validation Testing

Once written, a program may be validated by testing to ensure it satisfies

its requirements, e.g., correct results, required execution speed. A program

unit should be tested by itself first (unit testing) and then integrated into

the larger system and tested (integration and acceptance testing).

Tests cannot demonstrate the absence of errors, only detect their pres-

ence. In one sense, a successful test uncovers a defect. An unsuccessful test

uncovers no defects. Testing cannot locate or correct the defect; debugging

performs these functions. Section 6 provides details on testing.

9.5 Debugging

Debugging identifies and corrects source code defects. Defects or bugs

will occur in even the best designed and implemented code, so they should

be expected and planned for. For example, how many compilers do you

know of that had no bugs when first released?

Debugging requires highly developed problem solving skills. The de-

velopment environment strongly influences the amount of time required to

identify a bug. Excellent interactive debuggers make identifying a bug much

easier than inserting print statements. The software structure and design

strongly influence the amount of software that must be modified to correct

a bug. Good modular software using single entrance, single exit code struc-

tures and a modular data structure make modification much easier. For a
more complete discussion of debugging, refer to subsection 6.7.

68

i-.

10 Summary Example

These guidelines provide a number of software standards, practices, and

conventions that have proven useful in producing quality software. An exam-

ple implementation of these practices is provided in the outline below. It has

been used within Sandia for both in-house and contractor “small project”

software development. Larger projects will require more formal procedures,

e.g., for verification.4

Software Development Outline

1. Requirements: Determine the requirements of the new code or pro-

cedure to be developed.

(a) Write down the requirements.

(b) Discuss the requirements with the person responsible for the

project (project leader) and potential users. Obtain formal ap-

proval to proceed.

2. Design: Construct a diagram to depict the flow of the data.

(a) Provide an annotated picture of the design.

(b) Discuss the design with the project leader.

(c) Ensure the design is consistent with the requirements

(d) Generate a first cut at the module header documentation.

3. Detailed Design: Describe individual elements of the software sys-

tem with a detailed English-language (pseudocode) narrative.

(a) Include enough details in the narrative so that coding would be

easy to accomplish by someone other than the author. ~,

(b) Ensure the narrative is easy to read. If the narrative becomes

overly complicated, re-partition the design to make the overall

flow easier to understand.

4For larger projects, the developnlent process is broken into several tasks. Each task has
a well defined workproduct. Exch workproduct is inspected to ensure it satisfies the

appropriate requirements. The discussions with the project leader in the outline may
become fornml audits thfit zssess consistency and completeness of the workproduct.

69

(c) Discuss the narrative with the project leader. Ensure this level

of design satisfies the requirements (step 1) and adheres to the

data flow diagram (step 2). Project leader and programmer must

both be convinced the algorithm described by the narrative will

perform the desired functions.

4. Test Preparation: Construct a test set which will exercise the algo-

rithm presented in the narrative.

(a) Develop a test set that is “rich”: small enough to be manageable,

yet comprehensive enollgh to cover the domain of input values.

(b) Document the expected results of the tests.

(c) Note, discuss, and record any case that cannot be exercised due

to difficulty in designing or implementing the test set, in case a

problem arises later with that section of the code.

(d) Discuss the test set with the project leader.

5. Implementation: Code the algorithm from the narrative.

(a) Include all appropriate documentation and commenting at this

time.

(b) Walk through the code, checking that it performs the desired

function.

(c) Guarantee that the code as implemented agrees with the algo-

rithm specified in the narrative.

(d) Ensure the code is readable and maintainable by a programmer

other than the author.

(e) Ensure the project leader is willing to maintain the code as writ-

ten.

6. Validation:

(a) Test the software on the test set.

(b) Investigate the possible implementation of any enhancements and
future features. Document and re-test as required.

-.

.:

L.”

7. Operation and Maintenance: Install the resulting production ver-

sion of the code in the appropriate user area and place under configu-

ration control. Arrange for user training.

70

Appendix A

References
1. Introduction

IEE8iq The Institute of Electrical and Electronics Engineers, Inc.

ANSI IEEE Standard for Software Quality Assurance Plans, IEEE

Std 730-1984, New York, 1984.

IEE85 The Institute of Electrical and Electronic Engineers, lnc.

IEEE Guide for Software Quality Assurance Planning , approved

September 19, 1985.

SDJ4 Systems Development Methodology

For more information refer to SLI 1950 and Sandia National Labora-

tories’ Computing Education Center Catalog.

SSGWI Sandia Software Guidelines

Volume 1, Software Quality, SAND85-2344, Sandia National Labora-

tories, Albuquerque, NM, expected printing Jun 1987.

SSGVZ Sandia Software Guidelines

Volume 2, Documentation, SAND85-2345, Sandia National Labora-

tories, Albuquerque, NM, expected printing Jan 1988.

SSGV4 Sandia Software Guidelines

Volume 4; Configuration Management, SAND85-2347, Sandia Na-

tional Laboratories, Albuquerque, NM, expected printing Jun 1988.

SSGV5 Sandia Software Guidelines
Volume 5, Tools, Techniques, and Methodologies, SAND85-2348, San-

dia National Laboratories, Albuquerque, NM, expected printing Ott

1987.

z. Project Planning and Management

SSGV5 Sandia Software Guidelines

Volume 5, Tools, Techniques, and Methodologies, SAND85-2348, San-

dia National Laboratories, Albuquerque, NM, ezpected printing Ott

1987.

71

3. Requirements

ALF77 Al ford, M.W.

“A Requirements Engineering Methodology for Real-Time Processing

Requirements.” IEEE Transactions on Software Engineering. SE-

3(1):60-69;1977.

DEA478 DeMarco, T.
Structured Analysis and System Specification. New York: Your-

don; 1978.

GAN79 Gane, C.; Sarson, T.
Structured Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall; 1979.

IEE8$g The Institute of Electrical and Electronic Engineers, Inc.

IEEE Standard Glossary of Software Engineering Terminology, IEEE

Std 729-1983, February, 1983.

IEE84r The lnst itut e of Electrical and Electronics Engineers, Inc.
ANSI IEEE Guide for Software Requirements Specificationsl ANSI

IEEE Std 830-1984, New York, 1984.

ROS77 ROSS, D.T.
“Structured Analysis (SA): A Language for Communicating Ideas.”

IEEE Transactions on Software Engineering. SE-3(1):16-33 ;1977.

ROS77b Ross, D. T.; Schoman, Jr., K.E.

SDA4

SNL

“Structured Analysis for Requirements Definition.” IEEE Transac-

tions on Software Engineering. SE-3(1) :6-15 ;1977.

Systems Development Methodology

For more information refer to reference [SNL] and Sandia National

Laboratories’ Computing Education Center Catalog.
.

Sandia National Laboratories

Information Systems Standards, Sandia Laboratories Instruction, SLI

1950, June 1979.

TE177 Teichroew, D.; Hershey 111, E.A.
“PSL/PSA: a Computer-Aided Technique for Structured Documen-
tation and Analysis of Information Processing Systems.” IEEE Trans-

actions on Software Engineering. SE-3(1):41 -48;1977.

72

*

. .

WAS80 Wasserman, A.I.

“Information System Design Methodology” Journal of the American

Society for Information Science, Vol. 31, No. 1, January 1980.
.

.
WAS79 Wasserman, AL; Stinson, S.K.

“A Specification Method for Interactive Information Systems.” Pro-

ceedings: Specifications of Reliable Software. IEEE Computer Soci-

ety; 1979: 68-79.

4. Design

DA C85 Data and Analysis Center for Software

Software Life Cycle Tools Directory , Rome Air Development Center,

Griffiss AF13, New York, Mar 1985.

DEM78 Demarco, Tom

Structured Analysis and System Specification, New York, Jun 1978.

FRE80 Freeman, Peter

“The Context of Design,” Tutorial on Software Design Techniques,

3rd edition, New York: IEEE Computer Society; 1980.

lEE84 q The Institute of Electrical and Electronics Engineers, Inc.
ANSI IEEE Standard for Software Quality Assurance Plans, IEEE

Std 730-1984, New York, 1984.

lEE85 The lnst itut e of Electrical and Electronic Engineers, Inc.

IEEE Guide for Software Quality Assurance Planning , approved

September 19, 1985.
●

K1N84 King, D.
Current Practices in Software Development - A Guide to Successful

Systems, Yourdon Press, 1984

MAR83 Martin, James

Managing the Database Environment, Englewood Cliffs, NJ, Prentice-

Hall, 1983.

M YE78 Myers, Glenford J.
Composite/Structured Design, Van Nostrand Reinhold Company, Dal-

las, 1978.

73

\

PA G78 Page-Jones, Meilir.

The Practical Guide to Structured Systems Design, Yourdon Press,

New York, 1978

PRE82 Pressman, Roger S.
Software Engineering: A Practitioner’s Approach, McGraw-Hill, 1982.

YO U’i’9 Yourdon, Edward and Larry L. Constantine
Structured Design: Fundamentals of a Discipline of Computer Pro-

gram and Systems Design, Prentice-Hall, 1979.

5. Implemental ion

BOH66 Bohm, C. and G. Jacopini
“Flow Diagrams, Turing Machines, and Languages with only TWO

Formation Rules,” Communications of ACM, vol 9, no. 5, May 1966.

FA 185 Fairley, Richard E.
Software Engineering Concepts, McGraw-Hill Book Company, New

York, NY, 1985.

KER74 Kernighan, B. W., and Plauger, P.J.

The Elements of Programming Style, McGraw-Hill, New York, 1974.

6. Test

EVA 84 Evans, M.

Productive Software Test Management, John Wiley and Sons, 1984.

GR181 Gries, D.
The Science of Programming, Springer-Verlag, 1981.

1C”S8,2 Integrated Computer Systems

Structured Design and Programming, course notes, 1982.

IEE83t The Institute of Electrical and Electronics Engineers, Inc.
IEEE Standard for Software Test Documentation, IEEE Std 829-
1983, New York, 1983.

.-.

KIN84 King, D.
Current Practices in Software Development - A Guide to Successful

.!ystems, Yourdon press, New York, 1984

74 ,-.

SH083 Shooman, M.

Software Engineering: Design, Reliability and Management, McGraw-

Hill, 1983.

SSGV2 Sandia Software Guidelines

Volume 2, Documentation, SAND85-2345, Sandia National Labora-

tories, Albuquerque, NM, expected printing Jan 1988.

7. Operation and Maintenance

N UR83 U.S. Nuclear Regulatory Commission

NUREG-0856, Final Technical Position on Documentation of Comp-

uter Codes for High-Level Waste Management, Division of Waste

Management, Office of Nuclear Material Safety and Safeguards, Wash-

ington, D. C., Jun 1983.

SOP85 U.S. Department of Energy
SOP-03-02, Software Quality Assurance, NNWSI, Nevada Operations

Office, Las Vegas, NV, draft Nov 85.

8. Configurate ion Management

D UN82 Dunn, Robert and Unman, Richard

Quality Assurance for Computer Software, New York, NY, 1982.

ED W85 Edwards, J. E., Hebert, J. J., and Herr, C.P.
Martin Marietta, Software Development Standards for Martin Mari-

etta Energy Systems Computer Applications Engineering, Jan 1985,

K/D 5391 R2.

FA 185 Fairley, Richard E.

Software Engineering Concepts,

York, NY, 1985.

IEE8SC The Institute of Electrical

McGraw-Hill Book Company, New

and Electronic Engineers, Inc.

IEEE Standard for Software Configuration Manageme~t Plans, IEEE

Std 828-1983, New York, 1983.

9. Verification and Validation

A CK84 Ackerman, A. F., and Fowler, P. J.

“Software Inspections and the Industrial Production of Software,” in

Software Validation, H. L. Hausen (editor), Elsevier Science Publish-

ers B. V. (North-Holland), 1984.

75

FAG76 Fagan, M. E.

Design and Code Inspections to Reduce Errors in Program Develop-

ment, IBM Systems Journal, Number Three, 1976.

FA 185 Fairley, Richard E.

Software Engineering Concepts, McGraw-Hill Book Company, New

York, NY, 1985.

FO W85 Fowler, P.J. and Ackerman, A.F.
Videotape of a Sandia Labs Presentation of Inspection Techniques by

P. J. Fowler and A. F. Ackerman. Refer to Nov 1985 issue of Sandia

Computing Newsletter.

lEE8$g The Institute of Electrical and Electronic Engineers, Inc.

IEEE Standard Glossary of Software Engineering Terminology, IEEE

Std 729-1983, February, 1983.

IEE85 The Institute of Electrical and Electronics Engineers, Inc.
Draft Standard for Software Verification and Validation Plans, IEEE

Computer Society, Dec 2, 1985

SOL185 Somerville, I.

Software Engineering, 2nd edition, International Computer Science

Series, Addison Wesley Publishing Company, Workingham, England,

1985

SDS Structured Design Series

DELTAK course; for more information, refer to Sandia National Lab-

oratories’ Computing Education Center Catalog.

wE171 Weinberg, G .M.

Psychology of Computer Programming , Van Nostrand Reinhold, New

York, N. Y., 1971.

Additional References

U/’

1. Boehm, B.W.

“Software and Its Impact: A Quantitative Assessment” Datamation,
Vol. 19, May 1973.

76
w

z. Branstad, M., Cherniavsky, J., and Adrion, W.,

“Validation, Verification, and Testing for the Individual Programmer”,

Cornptder, December 1980.

3. Brooks, Frederick P., Jr.

“The Mythical Man-Month,” Essays on Software Engineering, Addi-

son-Wesley Publishing Co., Menlo Park, CA, 1975.

4. Connell, John and Brice, Linda

“Practical Quality Assurance”, Datarnation, March 1, 1985.

5. Conway, R., Gries, D., and Zimmerman, E.

A Primer on Pascal, Winthrop Publishers, 1976.

6. EDP Analyzer

Speeding Up Application Development, VOI.23, No.4, April 1985.

7. Freeman, Peter and Wasserman, Antony I.

Tutorial on Sojtware Design Techniques, 3rd edition, New York: IEEE

Computer Society; 1980.

(a) Boehm, B. W.: “Software and Its Impact: A Quantitative Assess-

ment”

(b) Freeman, P.: “A Perspective on Requirements Analysis and Spec-

ification”

(c) Lundeberg, M.: “An Approach for Involving the Users in the

Specification of Information Systems”

(d) Wasserman, A. I., Stinson, S. K.; “A Specification Method for In-

teractive Information Systems”

(e) Wasserman, A. I.: “Information System Design Methodology”

8. Jensen, R.W. and Tonics, C.C.

Software Engineering, Prentice Hall, Inc., Englewood Cliffs, New Jer-

sey, 1979.

9. Myers, Glenford J.

Reliable Software Through Composite Design, Petrocelli, 1975.

10. Squires, R.

Presentation notes, “Prototyping Beyond the Concept,” Cullinet User

Week ’85, PRES-UO08-U W85.

77

,.—

Appendix B

Glossary and Acronyms
Where possible, definitions in this glossary are taken from the IEEE

Standard Glossary of Software Engineering Terminology, [IEE83g]. They

are included here to provide a single-source document for the reader.

● acceptance testing: Formal testing conducted to determine whether

or not a system satisfies its acceptance criteria and to enable the cus-

tomer to determine whether or not to accept the system. [see system

testing]

. algorithm: A set of well-defined rules that gives a sequence of oper-

ations for performing a specific task.

● ANSI: American National Standards Institute

● baseline: A product that has been formally reviewed and agreed

upon, that thereafter serves as the basis for further development, and

that can be changed only through formal change control procedures.

● bottom-up integration: A system of integrating modules in a pro-

gram that starts with the bottom level modules and successively com-

bines them to form larger systems. [See top-down and sandwich

integration.]

● boundary condition: Extreme values (legal minimum/maximum

for application), values falling on/near stated limits, special values

(dependent on the application - e.g., blank, negative, zero)

● cohesion: The degree to which the tasks performed by a single pro-

gram module are functionally related. [contrast with coupling]

● coupling: A measure of the interdependence among modules in a

computer program. [contrast with cohesion]

● configuration control: The process of evaluating, approving, or dis-

approving, and coordinating changes to configuration items after for-

mal establishment of their baseline.

● cpu: central processing unit

78

● debugging: Debugging and testing are distinct processes. Testing

identifies faults; debugging locates, diagnoses, and corrects the fault.

Debugging’s input is testing activity’s output. [contrast with testing]

● design review: A formal meeting at which the preliminary or de-

tailed design of a system is presented to the user, customer, or other

interested parties for comment and approval.

preliminary design review (PDR) : The preliminary design

review should emphasize traceability of the design to the software re-

quirements, the practicality and maintainability of the design, and the

adequate definition of the interface and data structure descriptions.

critical design review (CDR) : The critical design review is

a review of the detailed design of the software system prior to code

development and implementation. lt also is called the detailed design

review.

● detailed design: The process of refining and expanding the prelim-

inary design to contain more detailed descriptions of the processing

logic, data structures, and data definitions, to the extent that the

design is sufficiently complete to be implemented.

● field or operational testing: Testing performed by the end user on

software in its normal operating environment.

● IEEE: The Institute of Electrical and Electronics Engineers, Inc.

. input and output assertions: Statements, usually stated formally

in terms of first order predicate logic, that describe what is true before

and after execution of some piece of code.

● inspection: A workproduct review process where a reader reads

through the workproduct and a group of inspectors try to identify

defects. Similar to walkthroughs, inspections are more formal in struc-

ture and documentation. [see also walkthrough]

● installation testing: The formal process of confirming that a system

or computer program is capable of satisfying its specified requirements

in an operational environment. [see field testing]

f--

● integration: The process of combining software elements, hardware

elements, or both into a system.

79

● integration testing: An orderly progression of testing in which soft-

ware elements, hardware elements, or both, are combined and tested

until the entire system has been assembled.

● interface: A shared boundary.

. module: logically distinct part of a program

. module or unit testing: A series of tests performed on a program

unit before it is integrated into a larger system.

● needs analysis: The process of studying user needs to arrive at a

definition of system or software requirements.

. preliminary design: The process of analyzing design alternatives,

defining the structure and relationships among the basic parts of the

system, defining the interfaces, and typically preparing timing and

sizing estimates.

● portability: The ease with which software can be transferred from

one computer system or environment to another.

. procedural specification: The detailed description of a subroutine,

a function, or a procedure.

● PIwduct ion environment: The conditions under which an applica-

tion ultimately will operate.

● proof of correctness: An attempt to “prove” a program correct

without running the program. These techniques can be considered a

form of testing. Input and output assertions are formulated describing

the program’s behavior; the goal is trying to prove that the program

will conform to the output assertions from the given input assertions.

● prototype: A minimally functional system used to illustrate the

software’s user interface or to prove the feasibility of a concept. Cau-
tion: This is a non-standard definition of the word prototype.

o pseudocode: A combination of programming language and natural

language used for computer program design.

.
● Wahb aSSurance: A planned and systematic pattern of all actions

necessary to provide adequate confidence that the item or product

conforms to established technical requirements.

80 -.

● real time: Pertaining to the processing of data by a computer in

connection with another process outside the computer according to

time requirements imposed by the outside process.

● requirement: A condition or capability that must be met by a sys-

tem or system component to satisfy a contract, specification, or other

formally imposed document. The set of all requirements forms the

basis for system development.

● sandwich integration: A system of integrating modules in a pro-

gram that is a combination of top-down and bottom-up integration.

● simulation testing: Testing software with a simulation program and

auxiliary hardware to imitate the “real” operating environment as

closely as possible.

● single-entry, single exit control structures: Coding constructs

that perform a well-defined task, have one entrance and one exit. Ex-

amples are IF-THEN-ELSE, DO-WHILE, REPEAT-UNTIL.

● software: Computer programs, procedures, rules, and associated doc-

umentation and data pertaining to the operation of a computer system.

● software design description: A document describing the major

components of the software design including data bases and internal

interfaces.

e software development process: The process by which user needs

are translated into software requirements, software requirements are

translated into design, the design is implemented in code, and the code

is tested, documented, and certified for operational use.

● software maintenance: Modification of a software product after

delivery to correct faults, to improve performance or other attributes,

or to adapt the product to a changed environment.

● software professional: One who develops or maintains software for

others.

● software reliability: The ability of a program to perform a required

function under stated conditions for a stated period of time.

81

● software structure: The overall representation of the software sys-

tem showing information flow and structure determined from the re-

quirements.

. specification: A concise statement of a set of requirements to be

satisfied by a product, indicating, wherever appropriate, the procedure

to determine whether the requirements given are satisfied. An example

is a system requirements specifications.

● structured design: A disciplined approach to software design that

adheres to a specified set of rules based on principles such as top-down

design, stepwise refinement, and data flow analysis.

o structured source code: Computer programs derived from struc-

tured design.

● subsystem testing: checking interfaces between system parts

● system: An integrated whole composed of diverse, interacting spe-

cialized structures and subfunctions.

● system testing: The process of testing an integrated hardware and

software system to verify the system meets its specified requirements.

● testing: process of exercising a system (or some component) to iden-

tify differences between expected and actual results. [contrast with

debugging.]

c top-down integration: A system of integrating modules in a pro-

gram that starts with the top level module and adds subordinate mod-
ules. [see bottom-up and sandwich integration.]

● validation: The process of evaluating software at the end of the soft-

ware development process to ensure compliance with software require-

ments. [see also verification]

e verification: The process of determining whether or not the products

of a given phase of the software development cycle fulfill the require-
ments established during the previous phase. [see also validation]

w

o walkthrough: A workproduct review process where the author reads
through the workproduct and a group of reviewers try to identify de-

fects. [see also inspection]

82
.

J----

Appendix C

Sample Sandia Module Header

The following example provides a recommended module header format

for Sandia software projects.

c===

SUBROUTINE ENDPTS

c===

C Description: Create Coordinate File --

c This module initiates the process to traverse the

c drawing file and extract coordinate endpoint data,

c either from a Vendor file or an IGES extracted file.

c

c Programmer: K.T. Bear, SNLA/2814, FTS 846-6014
c Version: 1.100

c Version Date: April 1, 1985
c Environment: DEC VAX 11/700/VMS 3.5, ANSIFORTRAN-77

c

c module calls: VENDOR, IGES

c module called by: MENUO1

c

c inputs: (drawing file name)
c outputs: (Coordinate Endpoint File)

c assumptions: Vendor file or IGES file has been opened.

c

c last modified on: 02/22/86

c last modified by: L. Marsupe, SNLA12814

c reason: To increase local endpoints limit

c from 100 to 200 (ref: IGES 3.0.)

c

c Local Variables:

c LUIN Vendor file or IGES file: Integer
c LUOUT Coordinate endpoint file: Integer
c NPTS Limiting number of endpoints: Integer
c ====== ====== .===== ====== ====== .===== ====.= ====== ====== ====== =.=

83

Appendix D

Control Structures
The following graphics represent programming control structures advo-

cated in section 5.2:

SEQUENCE

1

True

+

IF- THEN-ELSE

$True

False

t

DO- WHILE

False

t

REPEAT- UNTIL

t

CASE

84

#---

Appendix E

Inspection Report Forms
This Appendix provides example forms as developed by Sandia’s Data

SysteIns Division in response to requirements of the Software Inspection

process. as described in section 9.

The forms include the following:

● Inspection Profile

. To be completed by Author

● inspection Preparation Log

● To be completed by each inspector

.]n~pect,ion ~fana~erncnt Report

. To recompleted byhfoderator

● inspection Defect List

● To recompleted by Recorder

● inspection Summary

. To be completed by h!oderator

85

INSPECTION PROFILE

Project : Date :

Unit :

Inspection Type :

❑ Project Plan ❑ Requirements

❑ Code ❑ Test Plan

❑ Installation Plan

Size of hlaterial :

❑ Design

a Test Cases

reinspection : ❑ IVo a Yes

(unit)

of Open Items :

-.

Other Comments :

SNLA 6321 1 October1985 .—.

u

*

.

INSPECTION PREPARATION LOG

Project : Date :

Unit :

Inspector :

Role : ❑ Author ❑ Moderator ❑ Peer Inspector

Overview attendance : ❑ No D Yes

Date received Inspection Package :

date

Preparation Log :

Total Preparation :

Location

time

CONCERNS

Description

87

Inspection Management Report

Project Unit hloderator

Inspection type:

❑ Projec(Plan ~ Design

~ Code n Test Plan

~ Installation Plan

D Requirements

❑ Test Cases

Overview held: ~ No ~ Yes

Overvie\v Duration Number attending

Number of inspection meetings Total

Total number of’ inspectors Total

meeting duration

preparation time

l’vlodulc disposition: ~ pass n follow-up D reinspect

Estimated relvork effort ____--J~’Y’)

Rc\vork to be completed by

Actual rework effort

Reinspection scheduled for

Other inspectors

Moderator certification Date

Additional Comments

SNLA S321 - software inspection management report - issue 1- October 21, 1985

-.

88

Inspection Defect List

Project Unit hlodcrator

Inspection type:

n Project l’lan ~ Design

n code ~ Test I’lan

~ installation Plan

❑ Requirements

D Test Cases

Document Location Defect Description Defect
Type

Defect
class

.

.

Error type: IF=lntcrface D.4=Data LO= Logic 10=lnput/(>lJt l,l]t J'l; -- I'*rf(~rlljancc IlF=}luman factors ST= Standards

DC= Documcnlation SN=Syntax OT=Othcr

Error class: hi=. ilissing W=WrOng E=lhtra

Page of_
SN1.A Kt21 - softwarci!)s[,cctioll defect list-issue 1- October 21, 1985

89

Index

Note: Page numbers in boldface

reference a subsection on the in-

dexed term. Page numbers in ital-

ics reference a definition of the term

acceptance testing 43, 68, ’78

analysis phase 54

ANSI FORTRAN-77 31

assembler 29

baseline 78

table 55

bottom-up integration 78

boundary condition

change control 58

board 59, 61

change table 55, 57

checklist 61

code profilers 46

cohesion 26, 78

coupling 26, 78

comments 35

configuration

control 78

management 55

plan 55
conversion 52

direct, 53

modular, 53

parallel, 53
CPU 78

78

critical design review 23, 79

data

modular, 37

organization, 37

debugging 68, 79

symbolic interactive, 47

design, 15

description 15, 18

detailed, 17, 23, 79

document 21

review 23

preliminary, 80

review 15, 79

critical 23, 79

preliminary 79

results 15

structured, 24, 82

detailed design 79

documentation,

in-line 35

maintenance, 48

update supporting, 55

documenting changes 57

driver programs 46

dynamic testing 40

egoless programming 67

emergency changes

environment 1

production 80
error handling 32

fixes,

emergency, 58

formal reviews 62

HIPO 20, 24

implementation 29

58, 59

informal peer reviews 62

in-line documentation 35

94

G

*

inspection 65, 79

installation testing 79

integration 42, 44, 68, 79

librarian 56

of units 43

sandwich 81

integration testing

bottom-up, 78

top-down, 82

librarian 59

integration 56

library 38

80

maintenance 35, 54, 61

checklist 61

documentation 48

programmers 49

software 81

management,

configuration, 55

plan 55, 56

manual,

user’s, 48

mnemonics 31

modular data 37

module 31, 80

header 36

separation 36

needs analysis 80

operational testing 79

operating procedures 48

pencil test 35

plan,

configuration management 55,

56

project 5

training, 48

portability 34, 80

preliminary design 80

review 79

procedural specification 80

procedures,

operating 48

processor dependent 34

production environment 80

project plan 5

prologue,

source code, 60

programming

egoless, 67

maintenance, 49

proof of correctness 80

prototype 54, 80

pseudocode 16, 20, 69, 80

quality assurance 80

real-time 44, 81
systems, testing of 45

requirements 10, 81

rev iew

critical design 23, 79

formal 62

informal peer 62

preliminary design 79

software requirements 9

revision history 60

“rich” test set 41, 70

sandwich

integration 81

testing 42, 43
simulation testing 81

single entry, single exit 32
software 81

design description 18, 81

95

development process 81

life cycle 3, 62

professional 81

reliability 81

requirements,

review 9

specification 9

structure 82

test plan 39

source code prologue 60, 60

spaghetti code 29, ,?9

specification 82

procedural 80

software requirements 9

system requirements 40, 43

static testing 40

structured

design 82

source code 29, 82

walkthrough 22

subsystem testing 82

symbolic

constants 34, 47

interactive debugger 47

system 8,2

requirements specification 40,

43

testing 82

table,

baseline, 55

change, 55, 57

telephone test 35, 35

test set 39

documentation 39

“rich” 41, 70

test results 39

testing, 39, 68, 82

acceptance 43, 68, 78

dynamic 40

operational 79

installation 79

integration 80

real-time systems 45

sandwich 42, 43

simulation 81

static 40

subsystem 82

system 82

top-down 42

unit 68, 80

top-down

testing 42

training plan 48

unit testing 68, 80

update supporting documents 55

user’s manual 48

validation 62, 82

variable descriptors 37

verification 62, 82

walkthrough 64, 82

structured 22

white space 29, 29

w

96 -.

u

Distribution:

Sandia Internal:

333 R.D. Summers (2)

341 P.S. Hamilton

342 L.M. Ford (2)

1231 P.L. McAllister (2)

1254 T.F. Ezell (2)

1500 W. Herrmann

1520 D.J. McCloskey ‘

1523 J.H. Biffle (2)

1533 M.E. Kipp

1624 S.J. Weissman (2)

1636 P.C. Kaestner

2111 P. Hofstadler

2113 J.A. Wisniewski (5)

2113 J.A. Hudson (2)

2300 J.L. Wirth

2311 H.D. Pruett (2)
2311 R.C. Lennox (2)
2314 D.M. Small
2330 E.H. Barsis
2336 C.R. Bergman (2)
2600 R.J. Detry
2610 D.C. Jones
2612 D.M. Darsey
2614 A.R. Iacoletti
2620 E.C. Domme
2640 E.J. Theriot (2)
2642 P.A. Lemke (2)
2646 R.J. Hanson (2)
2800 H.W. Schmitt
2810 D.W. Doak
2811 J.C. Kelly
2811 L. Meirans (2)
2812 J.F. Jones, Jr. (2)
2812 L.M. Grady (5)
2812 R.J. Harrison
2813 S.K. Fletcher (2)
2813 S.L.K. Rountree (5)

2813 D.B. Saylors (2)
2814 P.A. Erickson
2814 A.L. Ames (2)
2814 M.A. Blackledge (100)
2814 R.E. Parks (2)
2820 G. Carli
2821 R.E. Thompson
2825 J.R. Yoder
2826 A.J. Ahr (5)
2830 G.R. Urish
2850 J.L. Tischhauser
2854 K.E. Wiegandt
2854 S.C. Babb (5)
2854 N.J. Nelson (2)
2854 V.R. Yarberry (2)
3151 R.L. Manhart
4030 G. W. Kuswa
5100 J.C. Crawford
5146 J.W. Redel
5164 D.H. Schroeder
5164 M.W. Sharp
5164 M.J. Smartt (2)
5172 G.C. Novotny
5172 G.J. Dodrill
5218 D.J. Gould
5255 P.W. Harris (2)
5255 A.L. Yates (5)
5261 D. Coleman
5263 R.F. Davis (2)
5268 C.E. Olson (2)
5311 M.C. Jones
5311 J.L. Krone
5311 J.E. Lenberg
5321 A.M. Maxted (2)
5321 C.C. Newcom
5321 D.H. Rountree (5)
5324 L.J. Ellis (2)
5324 M.T. McCornack (2)
5324 J.C. Rowe (2)

97

5324 W.J. Slosarik (2) 3141 S.A. Landenberger (5)

6228 P.J. Eicker 3151 W.L. Garner (3)

6310 E.W. Shepherd (2) 3154-1 C. H. Dalin (28)

6312 R.W. Prindle for DOE/OSTI

6315 R.C. Hall 8024 P.W. Dean

6330 G.R. Romero

6412 S.H. McAhren Second Printing, October 1992
6415 F’.E. Haskin (2)

6415 L.T. Ritchie (2) 3827 Betty Straba (500)

6440 D. Brosseau (2)

6440 D. A. Dahlgren (2)

6444 J.M. McGlaun (5)

7200 .J.M. Wiesen

7250 J.A. Hood

7252 C.A. Trauth, Jr.

7252 D.P. Patrick (5)

7252 S.L. Sardalos (2)

7262 F.A. ROSS

7262 D.G. Adams (5)

7262 R.B. Ronan (2)

7263 G.W. Mayes (2)

7521 S.Y. Goldsmith

7524 H.T. Cooley

7524 W.D. Swartz (2)

8025 R.L. Fugazzi

8230 W.D. Wilson

8235 D.L. Crawford (2)

8270 R.C. Dougherty

8272 D.B. Hall

8274 R.J. Aiken

8274 R.E. Isler (5)

8274 P.K. Neighbors

8348 T.P. Tooman (2)

8474 ,J.N. Rogers (2)

/.-

L_-”

98 *ues. @vERNmN~ pRIN~lNGOFFICE: 1992-774-038/64017 ,>

w

